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FOREWORD

These engineering instructions (EI) provide design criteria and guidance for Corps of Engineers
major subordinate commands (MSC), districts, and field operating activities (FOA).  These
engineering instructions are to be used as a guide when planning, programming, and designing
military facilities at Army installations.  

EI are living documents and will be periodically reviewed, updated, and made available to MSC,
districts, and FOA as part of the HQUSACE responsibility for technical criteria and policy for new
military construction.  CEMP-EA is responsible for administration of the  EI system; technical
content of EI is the responsibility of the HQUSACE element of the discipline involved. 
Recommended changes to EI, with rationale for the changes, should be sent to HQUSACE,
ATTN:  CEMP-EA, 20 Massachusetts Ave., NW, Washington, DC  20314-1000.

EI are effective upon issuance.  EI are distributed only in electronic media, primarily through
TECHINFO (both the electronic bulletin board at 205-895-1799 and Internet at
http://www.usace.army.mil or http://www.hnd.usace.army.mil and the Construction Criteria Base
(CCB) compact disk.  Hard copies produced by the user from the electronic media should be
checked against the current electronic version prior to use to assure that the latest instructions
are used.

FOR THE DIRECTOR OF MILITARY PROGRAMS:

KISUK CHEUNG, P.E.
       Chief, Engineering Division
               Directorate of Military Programs
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CHAPTER 1

INTRODUCTION

1-1.   PURPOSE AND SCOPE.   This document provides information, guidance, instructions, and
criteria for the design of sanitary and industrial wastewater gravity collection systems and
pumping facilities.

a.  Sewers. This document prescribes the approach, requirements, criteria, considerations,
and hydraulic calculations used in the design of gravity sewers. Acceptable materials and
appurtenances are also presented. Alternatives to gravity systems are described, but design
criteria is not given.

b.  Pumping Stations.  Facilities covered in these instructions include pump and ejector
stations required for (1) removal of sanitary and industrial wastes from remote or low lying areas
of sewers, (2) controlled introduction and lifting of raw wastewater into the waste treatment plant,
(3) transfer of recycled and bypassed flows throughout the plant, and (4) discharge of treated
scum; these facilities are presented in TM 5-814-3/AFM 88-11, Vol. 3. The design of a
wastewater pumping station will typically include site improvements, structures, screening, and
flow monitoring devices, pumping units, pump drives, system controls and instrumentation,
mechanical and electrical components, interior piping, underground force mains, valves, and
appurtenances.  Small grinder pumps such as those used in low pressure systems are not
included in this manual.

1-2.   APPLICABILITY.  These instructions are applicable to all USACE elements who plan and
design wastewater facilities at fixed Army and Air Force installations.

1-3.  REFERENCES.  Appendix A contains a list of references used in these instructions.
                             
1-4.  DESIGN OBJECTIVES.  The design of a sewer system must provide an engineered system
of sewers and pump stations, complete with all appurtenant facilities, sufficient in size and
capacity to collect and convey the required wastewater flows to an acceptable point of discharge. 
The system must be practicable, economically feasible, and all components must be located to
minimize the costs of installation, operation, and maintenance.  Sewers and appurtenances must
be structurally sound, and must protect the environment from pollution caused by leakage or
overflows.  Extraneous flows that hydraulically overload the system and produce flooding at
sewer manholes and lift stations must be excluded.  Elimination of excessive infiltration and
inflow is essential in avoiding increased costs of sewer maintenance, wastewater pumping, and
treatment.  Eliminating or minimizing conditions that lead to microbiological induced corrosion
and other deterioration of the systems will reduce maintenance and repair costs. Even more
important in this regard is the necessity to maintain design wastewater treatment efficiencies,
and thus assure that effluent discharge requirements are met.

1-5.  SPECIAL WASTES.  Contributing waste flows which are harmful to sewer pipe materials,
pumps, and appurtenant structures, toxic to biological and other waste treatment systems, or
create fire and explosion hazards or a safety hazard to personnel, must be identified and
evaluated early during predesign, so that suitable materials and/or procedures for their disposal
can be included.  Systems for hazardous and explosive wastes, corrosive acids or alkalies, high
temperature or other industrial type wastes, will generally require the selection of highly resistant
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pumps, valves and piping materials.  Design of these systems will be in accordance with special
criteria developed for the particular situation.  Selection of materials for pumps, piping, valves
and controls, etc., will be based on manufacturers' recommendations, product specifications, and
any other appropriate design manuals or applicable criteria.

1-6.  LIMITATIONS.  To protect sewers, pumping stations and treatment facilities from unwanted
pollutants and extraneous flows that result in excessive operation and maintenance, fire and
explosion hazards, or reduced wastewater treatment efficiencies, limitations must be placed on
the use of the sewer system.  Wastewaters from fuel loading and dispensing systems, grease
and oil from vehicle wash racks, aircraft washing and garage or shop floor drains, must be
directed through oil/water separators to prevent such wastes from entering the sewers. 
Combined sewers will not be permitted, and collection of storm drainage of any kind must be
avoided.  The general guidelines cited in Water Environment Federation (WEF) Manual of
Practice FD 3 for identifying wastes not admissible to sewers will be followed closely.  Chapters 3
and 8 of TM 5-814-8 provide a description of the various types of industrial wastes generated at
military installations, and give criteria governing discharge to sanitary or industrial waste sewers.

1-7.  ALTERNATIVES TO GRAVITY SYSTEMS.  There may be areas in which the topography is
not well suited for construction of a gravity sewer system.  In such areas, the installation of a
gravity system would require deep and expensive trench excavation, jacking, boring, tunneling, or
construction of long sewer lines to avoid unfavorable terrain.  In cases like these, the existing
topography and subsurface conditions at the site will be studied to determine if an alternative
system would be more feasible.  Depths of gravity sewers greater than 15 to 20 feet are usually
uneconomical.

     a.  Wastewater pumping.  The operation and maintenance costs of a pumping station with a
forcemain, when capitalized, may offset or exceed the construction costs of a deep gravity sewer
system.  When it is not readily apparent which solution would be more economical, the decision
to use one or the other will be based on a life cycle cost analysis.  Initial capital and construction
costs for pumps, ejectors, structures, force mains, etc., plus operation and maintenance costs,
will be compared with the costs of deep trench excavation, or other special construction methods
required for a gravity system.  Generally, a gravity sewer system will be justified until its cost
exceeds the cost of a pumped system by 10 percent.  TM 5-814-8 contains criteria for economic
evaluation of wastewater pumping.

     b.  Low Pressure Systems.  Some areas under consideration may be further limited by high
groundwater, unstable soil, shallow rock, or extremely adverse topography, and neither gravity
sewers nor pump or ejector stations will be suitable.  To overcome these difficulties, low
pressure systems using grinder pumps with small diameter (less than 100 mm (4-inch)) pressure
sewers may be utilized.  Low pressure systems are also used with flat topography where low
flows are anticipated.  In a typical installation, wastewater from individual buildings will be
discharged to a holding tank, and then periodically transferred by a grinder pump station through
small diameter pipe, into either a central pressure main, conventional gravity sewer, pumping
station, or wastewater treatment facility.  Grinder pump stations, which are most common in
housing units are package units, consist of single or duplex pumps in small underground
fiberglass reinforced polyester or concrete tanks with controls mounted above the tank or on the
side of the building served.  The pumps cut and shred  the waste before pumping it and create
only enough head to empty the tank - not the forcemain.  Normally a system must consist of
several grinder pump stations before sufficient pressure is generated to pump waste to its
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ultimate destination.  Such package units shall be used only for domestic waste or where no
solids such as bones,  wood, or sand can enter the system.  To minimize the need to maintain a
large inventory of parts, only one or two different types of pumps should be installed in a system. 
In any event increased maintenance programs should be anticipated.
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CHAPTER 2

PRELIMINARY DESIGN CONSIDERATIONS

2-1.  EXISTING CONDITIONS.  As an important initial step in the design process, existing maps,
drawings, surveys, boring logs, and other data containing pertinent information on existing
conditions in the area being served must be obtained.  Possible sources of such information
include the following:

   - Installation or Facility Engineer.

   - Army or Air Force using service.

   - Federal Agencies such as United States Geological Survey and  Soil Conservation Service.

   - State, county or municipal engineering departments.

   - Public utilities.

   - Commercial businesses and private firms (including A/E's).

   - Regional or local planning boards.

2-2.  FIELD INVESTIGATIONS.

     a. Maps.  If maps are not available, or do not provide satisfactory information or sufficient
detail of the site, field surveys must be performed.  Depending on the magnitude and complexity
of the project, subsurface exploration with soil borings may be required.  Topographic information
should show locations of all streets, buildings, pavements, sidewalks, vegetation, drainage
channels, and other land surface features such as utility manholes or structures, which may
influence the design and layout of the collection system.  Information on existing utilities should
include the location of underground water lines, sanitary sewers, storm drains, gas mains, steam
tunnels, electric conduits and similar facilities.

      b. Soil Conditions.  For larger projects, the character of the soil in which sewers will be
constructed should be determined.  The presence of rock, unfavorable soil conditions, or high
groundwater table should be clearly established.  The soil  bearing capacity is needed for
designing footings.  Soil tests used to determine the need for corrosion control include earth
resistivity, pH, oxidation-reduction potential, and relative moisture content. 

      c. Corrosion.  If metal pipe, structures, or appurtenances are to be buried, the need for
corrosion control must be assessed.  The need for corrosion control should be based on data
obtained from corrosion surveys, operating records, visual observations, inspections, and tests of
existing facilities in the area and from manufacturers recommendations.   

2-3.  LAYOUT.

     a.  Service area.  The requirement that an area be served by a wastewater pumping facility
will in most cases be determined by topography.  Building and grade elevations in the area
generally will be too low for proper gravity drainage to an existing or proposed sewer system, or
waste treatment facility.  Thus, collection and pumping of wastes from these low lying areas will
be necessary.  In addition to topographic considerations, natural boundaries like waterways,
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rivers, streams, etc., and property lines of Federal, state and local jurisdictions, also play a role in
determining the size and limits of service areas.

      b.  Sewer System.  The development of final sewer plans must await the final site plan, the
completion of field surveys, and to some extent, the establishment of floor grades.  However, the
development of economical site plans often requires concurrent preliminary planning of the sewer
system.  The location of building and lateral sewers will depend not only upon topography, but
also upon the type and layout of the buildings to be served.  Normally, the most practical location
would be along one side of the street.  In other cases they may be located behind the buildings
midway between streets.  In still other cases, in closely built-up areas and particularly where the
street is very wide or already paved, it may be advantageous and economical to construct
laterals on each side of the street.  Main, trunk, and interceptor sewers will follow the most
feasible route to the point of discharge.  All sewers will be located outside of roadways as much
as practicable, so that the number of roadway crossings will be reduced to a minimum.  A sewer
from one building will not be constructed under another building, or remain in service where a
building is subsequently constructed over it, if any other practical location for the sewer is
available.  Where no other location is suitable, necessary measures will be taken to assure
accessibility for future excavation and complete freedom of the sewer from superimposed
building loads.  The following general criteria will be used where possible to provide a layout
which is practical, economical and meets hydraulic requirements:

- Follow slopes of natural topography for gravity sewers.

 - Check existing maps or field surveys along prospective sewer routes to assure that
adequate slopes are available.

 - Avoid routing sewers through heavily wooded areas and areas which require extensive
restoration after construction.

- Check subsurface investigations for groundwater levels and types of subsoil encountered. 
If possible, avoid areas of high groundwater and the placement of sewers below the groundwater
table.

 - Locate manholes at changes in direction, size or slope of gravity sewers.

- Sewer sections between manholes should be straight.  The use of curved sewer alignment
is not  recommended. 

 - Manholes should be located at intersections of streets when possible.

 - Avoid placing manholes adjacent to water courses and in locations where the tops will be
submerged or subject to surface water inflow.

- Designer should evaluate alternative sewer routes where applicable.

- Verify that final routing selected is the most cost effective alternative that meets service
requirements.

     c.  Geographic Information System (GIS).  At some installations, information on existing
utilities is available on a GIS and the new design or the as-built drawings must be incorporated
into the GIS.  A Tri-Service Computer-Aided Design and Drafting/GIS (CADD/GIS) Standard is
currently being developed and, once approved, will be utilized for all designs. 



CEMP-E EI 11C201
1 March 1997

2-3

2-4.  PUMPING STATION SITE SELECTION.  The location of pumping facilities within a service
area will be based primarily on topographic considerations and the need to provide for future
development.  Pump stations will be located so that all points within the intended service area
can be drained adequately by gravity sewers.  Any planned development within the service area,
such as construction of new buildings or modifications to existing ones, or any projected shifts in
population and/or workforce will be considered.  This type of information is generally obtained
from the installation master plans, or from personnel staffing requirements.  It is a relatively
simple matter to design a pumping station with capacity for future development by providing
room for additional or larger pumps, motors, impellers, etc.  However, the physical location of the
station is more critical since it cannot be moved to accommodate new buildings or population
increases.  The following general guidelines for site selection and location of pumping stations
will be used: 

-Pumping facilities will not be constructed beneath buildings, streets, roadways, railroads,
aircraft aprons or runways, or other major surface structures, to the maximum extent practical.

-Pump stations will not be located closer than 150 meters (500 feet) to buildings, or other
facilities to be occupied by humans, unless adequate measures are provided for odor and gas
control. 

-Pumping stations at wastewater treatment facilities will normally be located, adjacent to, or
in connection with, other plant elements as required for proper functioning of the treatment
systems.

-The location of pumping stations will be made with proper consideration given to the
availability of required utilities such as electric power, potable water, fire protection, gas, steam,
and telephone service.

2-5.  PUMPING STATION BUILDING AND SITE REQUIREMENTS.

     a.  Floor and building elevations.  The invert elevations of incoming sewers will determine the
depths of underground portions (substructure) of the pumping station.  It is common practice to
set the maximum liquid level in the wet well equal to the 80-90 percent flow depth of the lowest
incoming sewer. Subsurface and soil conditions at the site will dictate the structural design,
excavation depths, and top of footing elevations required for the foundation.  Surface conditions
such as adjacent buildings and site grading will determine the elevations of floors above ground
(superstructure), except that the elevation of the ground floor will be set above the maximum
expected flood level.

     b.  Architectural and landscaping. For pumping stations located in built-up areas, the
architectural exterior of the buildings should be made similar to or compatible with, surrounding
buildings.  When the station is located in a remote area, building appearance is not important,
but the possibility of future development in the vicinity will be considered.  Pump stations and
facilities will be provided with fencing where necessary to prevent vandalism, and to protect
people from hazardous contact with electrical transformers and switching equipment. 
Landscaping should be considered in built-up areas, and will be required in residential
communities.  Where stations must be constructed in close proximity to residences or other
quarters, buffer zones of planted shrubbery should be provided for noise reduction.

      c. Access.  All pump stations will be readily accessible from an improved road.  For stations
that are not enclosed, access will be provided for direct maintenance from a truck equipped with
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hoist attachments. For enclosed stations, provisions will be included in the structure to facilitate
access for repair, and to provide a means for removal and loading of equipment onto a truck.

2-6.  PROTECTION OF WATER SUPPLIES.  There must be no physical connection between a
potable water line and the sewer system.  Sewer design will meet the following criteria:

- Sewers will be located no closer than 15 meters (50 feet) horizontally to water wells or
earthen reservoirs to be used for potable water supply.

- Sewers will be located no closer than 3 meters (10 feet) horizontally to potable water lines;
where the bottom of the water pipe will be at least 300 millimeters (12 inches) above the top of
the sewer, the horizontal spacing may be a minimum of 2 meters (6 feet).

- Sewers crossing above potable water lines must be constructed of suitable pressure pipe or
fully encased in concrete for a distance of 3 meters (10 feet) on each side of the crossing.  Force
mains will have no joint closer horizontally than 1 meter (3 feet) to the crossing, unless the joint is
encased in concrete.  The thickness of the concrete encasement will be a minimum of 100
millimeters (4 inches) at pipe joints.

- Depressed sewers crossing potable water lines must be installed below the water line with
a minimum vertical clearance of 600 millimeters (2 feet).  Sewer joints will not be closer
horizontally than 1 meter (3 feet) to the crossing, unless the joints are fully encased in concrete
as required above.
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CHAPTER 3

HYDRAULIC DESIGN OF SEWERS

3-1.  QUANTITY OF WASTEWATER.  For any segment of proposed sewer, the design
wastewater flow must be determined.  Sanitary or domestic wastes based on the population
served by a given segment, extraneous infiltration/inflow, and contributing industrial flows must
be added to produce the design flow.  Where existing flow records or data showing required flow
capacity are not available, the methods and criteria discussed below will be used to develop
design flows. 

     a.  Tributary area.  This is the area contributing wastewater to a particular sewer segment.
The quantity of wastewater which is collected by a particular segment is dependent upon the
types of personnel and industrial activities which are regularly found in the area.  Where no
information is available on existing areas to be served, a survey will be required to determine the
number and classification of personnel and the types of industries.  

     b.  Sanitary or domestic wastes.

          (1)  Contributing population.  Domestic wastewater quantities normally are to be computed
on a contributing population basis, except as noted in subparagraphs d and e below.  The
population to be used in design depends upon the type of area which the sewer serves.  If the
area is strictly residential, the design population is based on full occupancy of all housing and
quarters served.  If the area served is entirely industrial, the design population is the greatest
number, military and civilian,  employed in the area at any time, even though some of these
persons may also be included in the design of sewers in the residential area.  For sewers serving
both residential and industrial areas, the design population includes residents and nonresidents,
but in the design of these sewers obviously no person should be counted more than once. 
Allowances will be made for future population changes based on facility personnel requirements
and master planning projections.

         (2)  Average daily flow.  Average daily per capita wastewater quantities for different types
of installations and buildings are given in table 3-1.  The average daily flow will be computed by
multiplying the resident and nonresident contributing populations by the appropriate per capita
allowances and adding the two flows.  The average daily flow represents the total waste volume
generated over a 24-hour period.  However, it is not a realistic indicator of the rate of flow when
wastes are generated over shorter periods of 8, 10, 12 hours, etc.  Thus, the average daily flow
will be used only for designing sewers to serve the entire installation, or large sections of the
installation, and  where a major portion of the wastewater is generated by residents over a
24-hour period.
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Table 3-1.  Domestic Wastewater Allowances

Allowances1

                                          
  Liters/Capita/Day

                                           (Gallons/Capita/Day)  
             

* Permanent *   Field
Type of Installation *Construction *Training2

Army Posts, Forts, Camps, Airfields, *  380 (100) * 135 (35)
Plants and Depots                  * *   
Air Force Bases, Stations and Other  Facilities *  380 (100) *    -- 
POW and Internment Camps            *     -- * 135 (35)
Type of Building                    * *
   Single Family Housing (per unit)    * 1150 (300) *    -- 
   Multi Family Housing (per unit)     *   950 (250) *    -- 
   BOQ and BEQ                        *   265 (70) *  75 (20)
   EM Barracks                        *   190 (50) *  55 (15)
   Hospitals (per bed)                * 1150-2300 *  380
                                     * (300-600) *  (100)

Other buildings and establishments normally found on military installations, such as bowling
alleys, theaters, clubs, cafeterias, laundromats, schools, shops, gasoline service stations, etc.,
will be assigned typical waste loading values obtained from standard textbooks.           
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Notes on the use of table 3-1.
1.  Allowances do not include industrial and process wastes as defined in Chapter 3 of TM 5-814-8.

2.  These values represent domestic waste quantities for resident personnel averaged over the entire installation for a
24-hour period.  Nonresident personnel and civilian employees working 8-hour shifts will be allowed 115 liters/capita/day
(30 gallons/capita/day).  Normally, these quantities are to be used in design of wastewater treatment facilities as indicated
in Chapter 4 of TM 5-814-3/AFM 88- 11, Volume 3.  However, they will also be used for sizing interceptors, trunk sewers
and pumping stations serving large portions of the installation.

3.  For design of sewers serving smaller areas where several buildings or a group of buildings must be considered, the
appropriate wastewater allowances shown in the table or obtained from standard textbooks will be used.

4.  In family housing areas, each housing unit will be assigned 3.6 residents for the purpose of calculating populations.

5.  For hospitals, no separate allowance will be made for nonpatients and employees working shifts.

          (3)  Average hourly flowrate.  When designing sewers to serve small areas of the
installation where several buildings or a group of buildings are under consideration, and where
the majority of wastewater is generated by nonresidents or other short term occupants, the
average hourly flowrate will be used.  The average hourly flowrate will be computed based on the
actual period of waste generation.  For example, 1000 nonresidents at 115 Lcpd would generate
115,000 liters in 8 hours for an average hourly flowrate of 14,375 L/h or 345,000 L/d.  Note that
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the average daily flow would still be 115,000 L/d, or 115,000 liters in 24 hours, but the sewer
must be designed hydraulically to carry the 115,000 liters in 8 hours, not 24 hours.
 
          (4)  Peak diurnal flowrate.  The normal daily range of the rate of flow, or the diurnal
pattern, is from approximately 40 percent to 250 percent of the average daily flow.  The peak
daily or diurnal flowrate is an important factor in sewer design, especially when minimum
velocities are to be provided on a daily basis.  The peak diurnal flowrate will be taken as one half
of the extreme peak flowrate. 

          (5)  Extreme peak flowrate. Extreme peak rates of flow occur occasionally and must be
considered.  Sewers will be designed with adequate capacity to handle these extreme peak
flowrates.  Ratios of extreme peak flowrates to average flows will be calculated with the use of
the following formula: 

                         C 
       R    =    )))))
                         Q  0.167

 
where:

R  =  ratio of extreme peak flowrate to average flow 
Q =  average daily flow or average hourly flowrate in liters per day (gallons per day), 

         or liters per hour (gallons per hour), and 
C  =  constant, 47.71 for L/d (38.2 for gpd) or 28.10 for L/h (22.5 for gph)

When designing sewers to serve the entire installation, or large areas of the installation, and
where a major portion of the wastewater is generated by residents over a 24-hour period, the
average daily flow will be used in the formula, and the extreme  peak flowrate will be computed
by multiplying the average daily flow by the ratio R.  However, for sewers serving small areas of
the installation where several buildings or a group of buildings are being considered, and where
the majority of wastewater is generated by nonresidents or other short term occupants, the 
average hourly flowrate will be used in the formula, and the extreme peak flowrate will be
computed by multiplying the  average hourly flowrate by the ratio R.  Examples illustrating the
use of the above formula are provided in appendix B.  

     c.  Infiltration and inflow.  Extraneous flows from groundwater infiltration enter the sewer
system through defective pipe, joints, fittings and manhole walls.  Sources of inflow include
connections from roof leaders, yard drains, storm sewers, cooling water discharges and
foundation drains, in addition to submerged manhole covers.

          (1)  In computing wastewater flows for new sewers, design allowances for groundwater
infiltration will be 45 to 95 liters/day per millimeter diameter per kilometer of pipe (500 to 1000
gallons/day per inch diameter per mile of pipe), and will be added to the peak rate of flow.  For
design of Air Force facilities, use 45 Lpd/mm/km (500 gpd/in/mi).  Acceptance tests required for
newly constructed sewers normally limit leakage to 45 Lpd/mm/km (500 gpd/in/mi). 

          (2)  Where infiltration/inflow must be calculated from an existing collection system,
attempts must be made to obtain flow records from treatment facilities or pumping stations which
will provide information on the magnitude of I/I quantities.  In the absence of such flow data, and
depending on the scope of the project, it may be necessary to measure flows in the existing
system.  Where this is not possible or feasible, allowances of 23,500 to 235,000 Lpd/km (10,000
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to 100,000 gpd/mile) of pipe may be used depending on the size and age of the sewers,
materials of construction, and the soil and ground-water conditions. Installation personnel will
usually have some knowledge of these matters and should be aware of major problems.  Where
I/I is known to be excessive, it should be determined prior to design if corrective measures are
planned for the existing system, or if U.S. Environmental Protection Agency (EPA) evaluation and
rehabilitation programs will be implemented.

     d.  Industrial waste flows.  Industrial waste quantities from ordnance plants, technical
laboratories, laundries, vehicle maintenance shops, airplane wash racks, plating shops, and such
industries cannot be computed totally on a population or fixture unit basis.  Flows from such
plants depend upon the type and extent of the activities.  Industrial waste sewers and sanitary
sewers will be designed for the peak industrial flow as determined for the particular industrial
process or activity involved.

     e.  Fixture unit flow.  The size of building connections, including those from theaters,
cafeterias, clubs, quarters, and other such buildings, will in all cases be large enough to
discharge the flow computed on a fixture unit basis as set forth in the manual on plumbing, TM
5-810-5/AFM 88-8, chapter 4.  This requirement applies to building connections only, and not to
the lateral or other sewers to which they connect. 
 
3-2.  GRAVITY SEWER DESIGN.  Sewers will be designed to discharge the wastewater flows as
required by paragraph 3-1.  Generally, it is not desirable to design sewers for full flow, even at
peak rates.  Flows above 90 to 95 percent of full depth are considered unstable, and may result
in a sudden loss of carrying capacity with surcharging at manholes.  In addition, large trunk and
interceptor sewers laid on flat slopes are less subject to wide fluctuations in flow, and if designed
to flow full may lack sufficient air space above the liquid to assure proper ventilation.  Adequate
sewer ventilation is a desirable method of preventing the accumulation of explosive, corrosive or
odorous gases, and of reducing the generation of hydrogen sulfide.  Therefore, trunk and
interceptor sewers will be designed to flow at depths not exceeding 90 percent of full depth;
laterals and main sewers, 80 percent; and building connections, 70 percent.  However,
regardless of flow and depth the minimum sizes to be used are 150 millimeter (6-inch) for
building connections and 200 millimeter (8-inch) for all other sewers.  Building connections that
do not carry sanitary waste and will transport liquids with little or no solids, such as condensate
lines, can be smaller than 150 millimeters (6 inches), but no smaller than 100 millimeters (4
inches) is recommended for most situations.  Industrial applications will use the same design
criteria as sanitary sewers except pipe material that is resistant to the waste will be specified. 
The following formula, charts, procedures and criteria will be used for design.

     a.  Design formula and charts.  The Manning formula will be used for design of gravity flow
sewers as follows:

                              C
         V   =     ))))))    R S2/3 1/2

                              n
    where:

     C  =   1 for SI units (1.486 for IP units) 
      V =   velocity in meters per second (feet per second)
     n =   coefficient of pipe roughness 
     R =   hydraulic radius in meters (feet), and 
     S =   slope of energy line in meters per meter (feet per foot)
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 (1)  Roughness coefficient.  Values of n to be used in the formula range from 0.013

to 0.015.  The lowest n values apply to new or relatively new pipe (in sections greater than 1.5 m
(5 feet)) with smooth interior surfaces, smooth bore, even joints, in excellent to good condition
and well constructed.  Higher n values are required for older pipe with rough interior surfaces,
open or protruding joints, in fair to bad condition and poorly constructed.  Values up to 0.017 are
often justified for very old pipe (such as brick or block sewers) in extreme deterioration, or pipe
very poorly constructed with improper alignment, sags and bellies, cracked or offset joints,
broken wall sections or internal corrosion. Some manufacturers of plastic and asbestos cement
pipe report n values of 0.009 to 0.011.  However, due to uncertainties in design and construction,
plus a desire to provide a margin of safety, n values smaller than 0.013 will not normally be
permitted.  Variation of n with depth of flow has been shown experimentally, and may be
considered in designing sewers to flow partially full.  A solution to the Manning formula for full
pipe flow is shown in figure 3-1.

      
        

Figure 3-1.  Chart for Manning formula
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(2)  Velocity.  Sewers will be designed to provide a minimum velocity of 0.60 meters per
second (2.0 feet per second) at the average daily flow, or average hourly flowrate, and a
minimum velocity of 0.75 to 1.05 m/s (2.5 to 3.5 fps) at the peak diurnal flowrate, as determined
in paragraph 3-1.  When velocities drop below 0.30 m/s (1.0 fps) during periods of low flow,
organic solids suspended in the wastewater can be expected to settle out in the sewer. 
Sufficient velocity (0.75 to 1.05 m/s (2.5 to 3.5 fps)) must be developed regularly, once or twice
daily as a minimum, to resuspend and flush out solids which may have been deposited during
low flows.  A velocity of 0.75 m/s (2.5 fps) minimum is required to keep grit and sand suspended. 
However, new sewers which are properly designed and constructed should contain only minor
quantities of grit or sand.  Maximum velocity is set at 3.00 m/s (10.0 fps) in the event that grit
becomes a problem.

(3)  Slope.  Assuming uniform flow, the value of S in the Manning formula is equivalent to
the sewer invert slope.  Pipe slopes must be sufficient to provide the required minimum velocities
and depths of cover on the pipe.  Although it is desirable to install large trunk and interceptor
sewers on flat slopes to reduce excavation and construction costs, the resulting low velocities
may deposit objectionable solids in the pipe creating a buildup of hydrogen sulfide, and thus will
be avoided.

(4)  Cover.  Adequate cover must be provided for frost protection.  Generally, a minimum
0.6 meters (2 feet) of earth will be required to protect the sewer against freezing.  Where frost
penetrates to a considerably greater depth and lasts for an appreciable length of time, the wastes
may not contain sufficient heat to prevent the gradual cooling of surrounding earth and buildup of
an ice film inside the pipe.  Under these conditions, greater cover will be required.  Sufficient
cover must also be provided to protect the pipe against structural damage due to superimposed
surface loadings.  Concentrated and uniformly distributed loads are discussed in chapter 5.

     b.  Design procedure.  After a preliminary layout has been made, a tabulation will be prepared
in convenient form setting forth the following information for each sewer section:

- Designation of manholes by numerals or letters.

- Contributing populations -  resident and nonresident.

- Design flows - average, daily peak, and extreme peak.

- Length of sewer.

- Invert elevations.

- Invert slope or gradient.

- Pipe diameter and roughness coefficient.

- Flow depths at design flows.

- Velocities at design flows.

- Depths of cover on the pipe - maximum and minimum.

     c.  Hydraulic profile.  In most situations where small to medium sized gravity sewers are
installed in long runs, it will be safe to assume uniform flow throughout the entire length of
conduit.  However, in cases where larger sewers, 600-millimeter (24-inch) diameter and above,
are constructed in runs of less than 30 meters (100 feet), and with a number of control sections
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where nonuniform flow may occur, a plot of the hydraulic profile is recommended.  For process
and plant piping at wastewater treatment facilities, a hydraulic profile is always required. 
Methods used to calculate and plot hydraulic profiles including backwater curves, drawdown
curves and hydraulic jumps, will conform to those presented in standard hydraulics textbooks.

     d.  Critical flow.  Gravity sewers will ordinarily be designed to maintain subcritical flow
conditions in the pipe throughout the normal range of design flows.  However, there are
exceptions in which super critical flow may be required, and will be justified.  Minimum sized
sewers (150- and 200-millimeter (6- and 8-inch)) designed to discharge very low flows, must
occasionally be placed on slopes steeper than critical in order to provide minimum velocities.  In
addition, small to medium sized sewers when required to discharge unusually large flows, may
necessitate super critical slopes.  Finally, steep slopes may be unavoidable due to natural
topography and ground conditions.  Where super critical flow will occur, care must be taken in
the design to insure that downstream pipe conditions do not induce a hydraulic jump or other flow
disturbance.  Depths of flow within 10 to 15 percent of critical are likely to be unstable and will be
avoided where pipes will flow from 50 to 90 percent full.  Critical depths for various flows and
pipe diameters can be obtained from standard hydraulics textbooks.
   
     e.  Computer programs.  Numerous commercial computer programs are available for
modeling, data management (such as location, diameter, depth, slope, and capacity of each
sewer component), design, and analysis of sewer systems.  As well as being used to design new
systems, such programs can assist in assessing impacts of changes and additions to existing
systems and thus help optimize designs.  When the software interfaces with the design district's
or installation's GIS system (generally Intergraph Microstation or Autocad), three-dimensional
models allow designers to detect interference with other utilities.

3-3.  REQUIRED PUMPING CAPACITY.  Proper selection of the number and capacity of
pumping units is dependent upon the quantity and variation of wastewater flows to be handled. 
Except as indicated below for small stations, pumping units will be selected to handle the normal
daily range of wastewater flows generated in the service area.  The number and capacity of
pumps provided will be sufficient to discharge the minimum, average, peak daily and extreme
peak flowrates.  Pumping capacity will be adequate to discharge the peak flowrates with the
largest pump out of service.  Pumps utilized for treatment plant processes, recycling and
bypassing of flows, etc., will be based on criteria developed in TM 5-814-3/AFM 88-11, Vol. 3. 
Consideration will be given to future conditions which may occur during the life of the station. 
Normally, where future development and population increases are projected for the area, pumps
will be designed for initial conditions only, and the station will be provided adequate room for
expansion of pumping capacity at a later date.  Expansion of pumping capacity can be
accomplished with the installation of additional pumping units, larger pumps, impellers, drive
units, adjustable or variable speed drives.  However, some situations may warrant provision of
capacity for future increases initially, for economic or other reasons.  Each case will be analyzed
individually.

     a. Small stations.  Pumping stations required for small remote areas which generate extreme
peak flowrates of less than 45 L/s (700 gpm), and where the possibility of future expansion is
unlikely, and grinder pump installations serving three or more buildings, will be provided with two
identical pumping units.  Each pumping unit will be of the constant speed type, and will be
capable of discharging the extreme peak wastewater flowrate.  The station will be designed to
alternate between zero discharge and peak discharge.  This arrangement will provide 100
percent standby capacity to allow for necessary maintenance and repairs.  Pneumatic ejector
stations will be provided with duplex ejectors each sized for the extreme peak flowrate.
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     b.  Large stations.  Pumping stations serving large areas of the installation, and especially
stations where the entire wastewater flow or major portions thereof must be pumped to the
treatment facility, will be designed so far as practicable to operate on a continuous basis.  The
rate of pumpage must change in increments as the inflow to the station varies.  This mode of
operation will normally require two or more wastewater pumps of the constant or variable speed
type, operating in single or multiple pump combinations, as required to match the incoming
flowrates.

3-4.  DEPRESSED SEWERS.

     a.  Velocity and flow analysis.  Since a depressed sewer, or inverted siphon, is installed below
the hydraulic grade line, the pipe will always be full of wastewater under pressure, even though
there may be little or no flow.  Thus, the design requires special care to secure velocities that will
prevent clogging due to sedimentation of solids.  The velocity should be as high as practicable,
with a minimum requirement set at  1 meter per second (3.0 feet per second).  Hydraulic
calculations may be based on the Manning formula or Hazen-Williams analysis.  A minimum
Manning roughness coefficient of 0.015 is recommended due to possible accumulations of
grease and other materials on pipe walls.  The pipe will be as small as the available head
permits except that pipe smaller than 150-millimeter (6-inch) is not permitted.  Inasmuch as the
sewer must be of sufficient size to discharge the extreme peak flows, better velocities for the
normal range of flows can often be obtained by using several small pipes instead of one large
pipe.  This requires an entrance box equipped with a diversion gate for the periodic alternation of
pipes in service and with an overflow weir so arranged that, when the flow exceeds the capacity
of one pipe, the excess can overflow to the other pipes.  However, conditions might be such that
two or three pipes in lieu of one would not be advantageous or necessary.  Each case will be
analyzed individually.
 
     b.  Cleaning and inspection.  Depressed sewers should be flushed frequently and inspected to
make sure that obstructions are removed.  Therefore, manhole structures or cleanout chambers
will be required at each end of the sewer to allow access for rodding and pumping. 

     c.  Pipe materials.  Since a depressed sewer must withstand internal pressures greater than
atmospheric, pipe materials required for use will be as indicated for force mains.

3-5.  HYDROGEN SULFIDE IN SEWERS.  Two of the most important problems occurring in
wastewater collection systems are (l) the corrosion of sewers and appurtenances, and (2) the
propagation and emission of odorous and toxic gases.  Both of these problems can be attributed
in large part to the generation of hydrogen sulfide (H S) in sewers.  Reference is made to U.S.2
Environmental Protection Agency (EPA) publication, Process Design Manual for Sulfide Control
in Sanitary Sewerage Systems, for a complete discussion of this topic.  Sewers will be designed
hydraulically in accordance with EPA guidelines established therein to prevent excessive
generation of H S.  In general, small diameter sewers designed to maintain velocities greater2
than 0.6 meters per second (2.0 feet per second), and sufficient air-to- wastewater contact,
normally experience no significant buildup of H S.  Larger sized sewers may be susceptible to2
H S formation, but rates of generation can be reduced through proper design, with2
concentrations limited to less than 1.0 milligram per liter.
 
     a.  Corrosion control.  Where it is determined that the potential exists for damaging H S2
concentrations that will cause microbiological induced corrosion (MIC) or acid corrosion, such as
new sewer connections to older systems with a history of H S problems and deteriorating2
sewers, pipe materials must be selected to resist MIC and attack from sulfuric acid.  Chapter 8
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describes various pipe materials and applications suitable for sewer use.  As indicated, the pure
plastics (PVC and ABS), fiberglass, and vitrified clay are best suited for corrosive environments,
whereas concrete (including ABS composite), ductile iron, and cast iron soil pipe should be
avoided unless special protective linings, coatings, or treatments are provided. 

     b.  Sewer gases.  In designing the sewer system, consideration will be given to the possibility
of objectionable odors being emitted from manholes and sewers. As noted in paragraph a.
above, new sewer connections to older systems with a history of H S problems will very likely2
experience similar difficulties.  In these cases, sewers and manholes will be located such that
emissions of odorous sewer gases, and in particular H S, do not create a nuisance or hazard for2
nearby building occupants.
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CHAPTER 4
                
 SEWER SYSTEM LAYOUT AND APPURTENANCES

4-1.  MANHOLES.

     a.  Requirement.  Manholes are required at junctions of gravity sewers and at each change in
pipe direction, size or slope, except as noted hereinafter for building connections. 
   
     b.  Spacing.  The distance between manholes must not exceed 120 meters (400 feet) in
sewers of less than 450-millimeters (18-inches) in diameter.  For sewers 450-millimeters
(18-inches) in diameter and larger, and for outfalls from wastewater treatment facilities, a spacing
of up to 180 meters (600 feet) is allowed provided the velocity is sufficient to prevent
sedimentation of solids. 
   
     c.  Pipe connections.  The crown of the outlet pipe from a manhole will be on line with or
below the crown of the inlet pipe.  Where conditions are such as to produce unusual turbulence
in the manhole, and especially where the size of the outlet pipe is to be smaller than the inlet
pipe because of the availability of a more favorable slope, it may be necessary to provide an
invert drop to allow for entry head, or increased velocity head, or both.  Where the invert of the
inlet pipe would be more than 450 millimeters (18 inches) above the manhole floor, a drop
connection will be provided. 
   
     d.  Frames and covers.  Manhole top elevations will be set to avoid submergence of the cover
by surface water runoff and ponding.  Where this is not possible, watertight covers will be
installed to prevent storm water inflow.  Bolting or locking devices will be included on covers to
prevent unauthorized entry in areas designated by the using agency as secure.  Frames and
covers must be sufficient to withstand impact from wheel loads where subject to vehicular traffic. 
Covers of a nominal 30 inches or larger diameter shall be installed where personnel entry may
occur.
     
     e.  Design standards.  Where suitable Federal, Army, or Air Force standard drawings and
specifications exist, they will be used for design of manhole structures, unless a special design is
required.  The following construction practices will be required:

- Smooth flow channels will be formed in the manhole bottom. Laying half tile through the
manhole, or full pipe with the top of the pipe being broken out later, are acceptable alternatives.
 

- For manholes over 3.5 meters (12 feet) in depth, one vertical wall with a fixed side-rail
ladder will be provided. 

- Drop connections will be designed as an integral part of the manhole wall and base.
  

- In areas subject to high groundwater tables, manholes will be constructed of materials
resistant to groundwater infiltration.

     f.  Materials of construction.  The primary construction materials to be used for manhole
structures are precast concrete rings; prefabricated PVC, high density polyethylene, and
fiberglass units; and cast-in-place, reinforced or nonreinforced concrete.  In the past, most
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manholes were built of brick masonry, and are now frequently the source of significant volumes
of groundwater infiltration.  More recently in attempts to alleviate this problem, precast concrete,
plastic, and fiberglass manholes have been utilized.  In certain situations precast units will not be
suitable, and cast-in-place reinforced concrete will be required.  Cast-in-place construction
permits greater flexibility in the configuration of elements, and by varying reinforcing the strength
of similar sized structures can be adjusted to meet requirements.  In general, materials used
should be compatible with local construction resources, labor experience, and should be cost
competitive.

4-2.  BUILDING CONNECTIONS.  Building connections will be planned to eliminate as many
bends as practical and provide convenience in rodding.  Bends greater than 45 degrees made
with one fitting should be avoided; combinations of elbows such as 45-45 or 30-60 degrees
should be used with a cleanout provided.  Generally, connections to other sewers will be made
directly to the pipe with standard fittings rather than through manholes.  However, a manhole
must be used if the connection is more than 30 meters (100 feet) from the building cleanout. 
Normally, the cleanout inside the building will not be adequate for complete rodding, thus outside
cleanouts will be provided.  Installation  of a two-way cleanout at the building connection (1.5
meters (5 feet) from the footing) is recommended.  Manholes will be installed where cleanouts
are not feasible.

4-3.  CLEANOUTS.  Cleanouts must be installed on all sewer building connections to provide a
means for inserting cleaning rods into the underground pipe.  An acceptable cleanout will consist
of an upturned pipe terminating at, or slightly above, final grade with a plug or cap.  Preferably
the cleanout pipe will be of the same diameter as the building sewer, and never smaller than 150
mm (6 inches).
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  CHAPTER 5
                                        

STRUCTURAL DESIGN OF SEWERS

5-1.  GENERAL.  The structural design of a sewer requires that the supporting strength of the
pipe as installed, must equal or exceed the external loading multiplied by a factor of safety.  The
following criteria for structural design of sewers are based on the assumption that sewers will be
laid in open trenches entirely below natural ground surface and backfilled with suitable materials,
that the sides of the trench will be nearly vertical below the top of the pipe and will have slopes
no flatter than one horizontal to two vertical above the pipe, and that the trench width at the top
of the pipe will be relatively narrow.  In general, the trench width will be limited to the maximum
allowed or recommended by the pipe manufacturer.  Special cases involving sewer installation in
unsatisfactory soil, rock, embankments or fills, sewers requiring jacking, boring or tunneling, and
pipe placed above ground, are too rare to warrant lengthy consideration in this manual. 
Paragraph 5-4 contains a general discussion of such situations.  Sewers installed in cold regions
or in seismic zones will require special design considerations.

5-2.  LOADS ON SEWERS.  There are three kinds of external loads to which a sewer laid in a
trench may be subjected.  They are (l) loads due to trench filling materials, (2) uniformly
distributed surface loads, such as stockpiled materials or loose fill, and (3) concentrated surface
loads, such as those from truck wheels. 

     a.  Trench fill loads.  The Marston formula will be used for calculating loads on rigid conduits
as follows:

           W  =   C wBt t t
2

  where:

     W =  vertical load on conduit in kilograms per lineal meter (pounds per lineal foot)t
    C  =  trench load coefficient for buried conduitst
    w   =  unit weight of trench fill materials in kilograms per cubic meter (pounds per 
             cubic foot), and

     B =  horizontal width of trench at top of pipe in meters (feet)t

For calculation of loads on flexible conduits the prism formula will be used as follows:

         W =  HwBt   c

where:

   H  =  height of fill from top of pipe to ground surface in meters (feet), and
 B =  horizontal width or outside diameter of pipe in meters (feet).c

The unit weight of soil backfill normally varies from a minimum of 1600 to a maximum of 2160
kilograms per cubic meter (100 to 135 pounds per cubic foot).  In the absence of soil density
measurements, the weight per cubic meter (cubic foot) of various materials may be taken as
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1920 kilograms (120 pounds) for mixed sand and gravel, 1760 kilograms (110 pounds) for
saturated top soil (loam and silt), 1920 kilograms (120 pounds) for ordinary damp clay, and 2080
kilograms (130 pounds) for saturated clay.  The load coefficient C  is a function of the fill height Ht
divided by the width of trench B .  An examination of the Marston formula will show thet
importance of the trench being as narrow as practicable at and below the top of the pipe.

     b.  Uniformly distributed loads.  Newmark's modification to the classical Boussinesq equation
results in the following formula to be used for calculating distributed loads on rigid and flexible
conduits.

        W  =  C pFBd s c

where:

 W   =  vertical load on the conduit in kilograms per lineal meter (pounds per lineal foot)d
  C    =  surface load coefficient for buried conduitss
  p    =  intensity of distributed load in kilograms per square meter (pounds per square 

    foot)
  F    =  impact factor, and

 B    =  horizontal width or outside diameter of pipe in meters (feet).c

The load coefficient C  is dependent upon the area over which the load p acts.  It will be selecteds
from table 5-1 as a function of the area width D and length M, each divided by twice the height of
fill H.  The impact factor F will be determined with the use of the table 5-2.

Table 5-1.  Surface load coefficient
Values of load coefficients, C , for concentrated and distributeds

Superimposed loads vertically centered over conduit

D/2H
  or                                                                                    M/2H or L/2H
B /2Hc

  0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0   1.2   1.5   2.0   5.0

0.1 0.019 0.037 0.053 0.067 0.079 0.0890 0.097 0.103 0.108 0.112 0.117 0.121 0.124 0.128
0.2 0.037 0.072 0.103 0.131 0.155 .174 0.189 0.2020 0.211 0.219 0.229 0.238 0.244 0.248
0.3 0.053 0.103 0.149 0.190 0.224 0.252 0.274 .292 0.306 0.318 0.333 0.345 0.355 0.360
0.4 0.067 0.131 0.190 0.241 0.284 0.320 0.349 0.373 0.391 0.405 0.425 0.440 0.454 0.460

0.5 0.079 0.155 0.224 0.284 0.336 0.379 0.414 0.441 0.463 0.481 0.505 0.525 0.540 0.548
0.6 0.089 0.174 0.252 0.320 0.379 0.428 0.467 0.499 0.524 0.544 0.572 0.596 0.613 0.624
0.7 0.097 0.189 0.274 0.349 0.414 0.467 0.511 0.546 0.584 0.597 0.628 0.650 0.674 0.688
0.8 0.103 0.202 0.292 0.373 0.441 0.499 0.546 0.584 0.615 0.639 0.674 0.703 0.725 0.740

0.9 0.108 0.211 0.306 0.391 0.463 0.524 0.574 0.615 0.647 0.673 0.711 0.742 0.766 0.784
1.0 0.112 0.219 0.318 0.405 0.481 0.544 0.597 0.639 0.673 0.701 0.740 0.774 0.800 0.816
1.2 0.117 0.229 0.333 0.425 0.505 0.572 0.628 0.674 0.711 0.740 0.783 0.820 0.849 0.868
1.5 0.121 0.238 0.345 0.440 0.525 0.596 0.650 0.703 0.742 0.774 0.820 0.861 0.894 0.916
2.0 0.124 0.244 0.355 0.454 0.540 0.613 0.674 0.725 0.766 0.800 0.849 0.894 0.930 0.956
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     c.  Concentrated loads.  The formula to be used for calculating concentrated loads on rigid
and flexible conduits is a modified form of the Boussinesq equation developed by Holl, and is as
follows:

       W  =  C PF/Lc s
where:

W  =  vertical load on the conduit in kilograms per lineal meter (pounds per lineal foot)c
 C   =  surface load coefficient for buried conduitss

P =  concentrated load in kilograms (pounds)
F =  impact factor, and

 L =  effective length of conduit in meters (feet).
 
An effective length of 0.914 meters (3 feet) will be used in all cases, except where pipe lengths
are less than 0.914 meters (3 feet), in which case the actual length of pipe will be used.  The
load coefficient C  is a function of conduit width B  and effective length L, each divided by twices c
the height of fill H.  Determination of the load coefficient will be by the use of table 5-1, and
impact factor F will be selected from table 5-2.  It will be noted from table 5-1 that the effect of a
concentrated or distributed load diminishes rapidly as the amount of cover over the sewer
increases.

Table 5-2.  Impact factor (F) vs. height of Cover
Height of Installation      Surface       Condition
Cover, m.                                                           Taxiways, Aprons
(ft.)      Highways  Railways      Runways       Hardstands, Run-up Pads

0 to 0.35        1.50    1.75    1.00     1.50
 (0 to 1)

0.35 to 0.65  1.35         *  1.00         **
 (1 to 2)
  
0.65 to 1.00   1.15         *  1.00         **
 (2 to 3)

   
Over 1.00 m       1.00         *  1.00         **
 (Over 3 )

* Refer to data available from American Railway Engineering Association (AREA)
** Refer to data available from Federal Aviation Administration (FAA)
_______________________________________
Note that for a static load, F = 1.0
Source: Handbook of PVC Pipe-Design and Construction by Uni-Bell PVC Pipe Association,
Dallas, Texas, Copyright 1977,1979, p. 133.
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5-3.  SUPPORTING STRENGTH OF SEWERS.  A sewer's ability to resist external earth and
superimposed loads depends not only on the pipe's inherent structural capability, but also on the
method of installing the pipe in the trench, i.e., class of bedding, type of backfill materials and soil
compaction effort, etc.

     a.  Rigid conduit.  Pipe strength in general will be determined by the three-edge bearing test
or TEBT (termed crushing strength in various pipe specifications) and is expressed in kilograms
per lineal meter (pounds per lineal foot).  However, since this does not represent the actual field
loading conditions, a relationship must be established between calculated load, laboratory test
strength and field support strength.  The definitions and terminology listed below will be used to
develop this relationship.  The total load must not exceed the safe supporting strength.

- Field support strength is the maximum load in kilograms per lineal meter (pounds per lineal
foot) which the pipe will support when installed under specified trench bedding and backfill
conditions.
 

- The load factor is the ratio of the field support strength to the TEBT, and will be selected
from figure 5-1 depending on the class of bedding used.

- Safe supporting strength is the field support strength divided by a factor of safety, equal to
1.5 for rigid conduits.

- An additional parameter is the working strength, which is the three-edge bearing strength
divided by the factor of safety.

For piping not tested and rated by the TEBT method, other strength criteria will be applied as
follows.  Reinforced concrete pipe strength will be based on D-loads at the 0.25-mm (0.01-inch)
crack load and/or ultimate load as described in the Concrete Pipe Handbook published by the
American Concrete Pipe Association. For ductile iron pipe, ANSI A21.50 will be used to calculate
the required pipe thickness classification in relation to field loadings.  See paragraph 8-1 for
additional information. The strength of cast iron soil pipe, which normally will be used for building
connections only, should be evaluated as outlined in the Cast Iron Soil Pipe & Fittings Handbook
published by the Cast Iron Soil Pipe Institute.
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Figure 5-1. Load factors and class of bedding 

    b.  Flexible conduit.  The capability to resist pipe deflection and buckling under loads is the
primary criterion used in the structural design of flexible conduit.  When loaded the pipe walls will
deflect, thereby creating a passive soil support at the sides of the conduit.  This pipe-soil system
is essential in providing a high effective strength, often enabling it to out perform rigid pipe under
identical loading and soil conditions.  While the three-edge bearing strength is an appropriate
measure of load carrying capacity for rigid conduits, it is not applicable for describing flexible pipe
stiffness.  Because a flexible conduit must successfully interact with the surrounding soil to
support its load, the method of backfill placement, types of materials used, soil compaction, etc.,
are more critical than trench width or bedding.  Since the theories describing flexible pipe
behavior, stiffness and deflections under load are lengthy, and the formulas cumbersome to use,
they will not be presented in this manual.  The same is true with less flexible plastic pipes such
as acrylinitrile butadiene-styrene and profile wall PVC (ribbed or corrugated).  The methods and
procedures adopted in the Handbook of PVC Pipe Design and Construction by the Uni-Bell PVC
Pipe Association, and WEF Manual of Practice FD-5 will be used in design.  The project
specifications will be prepared to reflect the stringent installation and construction requirements



EI 11C201 CEMP-E
1 March 1997

5-6

for flexible pipe.
   
     c.  Pipe installation.
     
          (1)  Bedding.  Figure 5-2 depicts various classes of bedding generally used when installing
sewers.  A complete discussion of each class is contained in several engineering publications,
including WEF Manual of Practice FD-5 and the Clay Pipe Engineering Manual by National Clay
Pipe Institute (NCPI).  The designer should refer to these when selecting a pipe bedding system. 
When the class and type of bedding have been chosen, the bedding materials will be
coordinated with and identified in the specifications, and the types and sizes will be shown on the
drawings.
   
          (2)  Backfill and compaction.  Backfill materials and compaction requirements will be
included in the  specifications.  The possible use of locally available materials for backfill will be
investigated.  Compaction requirements will be designated for the particular soil and moisture
content at the site.

          (3)  Installation manuals for the particular types of pipe to be specified will be reviewed to
ascertain that bedding, backfill and compaction are adequate for the existing subsurface
conditions at the site.

5-4.  SPECIAL DESIGNS.

     a.  Unsatisfactory soil conditions.  Information on subsurface conditions must be obtained
from borings, drill holes, or test pits prior to design of the sewer system.  Soil considered too
unstable for use as pipe bedding or backfill consists of silt, quicksand, peat bog, muck and other
organic materials.  Where these materials exist, the following procedures will be used to provide
a suitable pipe bedding.
     
          (1)  In situations where unstable materials occur at shallow depths, it will generally be
acceptable to over excavate native soil to just below the trench bottom, and replace with a layer
of crushed stone, gravel or other coarse aggregate.  Concrete or wooden cradles can be used in
lieu of aggregates.
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Figure 5-2. Bedding
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Figure 5-2 Bedding (continued)
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Figure 5-2. Bedding (concluded)
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(2)  Where unstable soil extends to considerable depths, more stringent measures must
be taken.  The sewer will be fully encased in concrete and supported on piles at each end.  The
pipe and encasement will be designed to act as a beam when the span distance is relatively
short.
    
           (3)  For extremely severe cases, where unsatisfactory material covers a large area, and
extends well below the trench bottom, a row of piling capped with concrete or wood cradles will
be required to support the sewer.  Dwarf piling may be suitable substitute for conventional piling
in certain situations.
  
     b.  Installation in rock.  Where sewers must be constructed in rocky terrain, trenches will be
sufficiently wide to provide clearance between the sides and bottom of the pipe, and any rock in
the trench.  Pipe must be installed to avoid all contact with rock, or any other unyielding material
in the trench.  A granular type bedding or concrete cradle will normally be provided along the pipe
bottom, and trenches will be backfilled with satisfactory materials. 
   
     c.  Sewers in embankments.  The need to install sewers above original ground surface in an
embankment or fill does not arise frequently at military installations.  Occasionally, an
embankment will be required in low lying areas to raise the grade, or will be provided to avoid
placing sewers aboveground, as discussed below. 

   
d.  Aboveground sewers.  Sewers are normally laid underground, and at sufficient depths to

be protected from impact and freezing.  However, in cases where valleys, watercourses,
structures, or other obstacles must be crossed, it is sometimes more advantageous to install
sewers aboveground.  Sewers supported from bridges, piers, suspension cables, or pipe beams,
etc., will be designed with adequate structural capability.  Protection against freezing and
prevention of leakage are important design considerations.  Expansion jointing may also be
required.
 
     e.  Jacking, boring, tunneling, and microtunneling.  In situations where sewers must be
constructed more than 5 to 6 meters (15 to 20 feet) below ground surface, through
embankments, under railroads, primary access roads, or airfield pavements, or where the Facility
Engineer determines that conditions make it difficult or impractical to excavate open trenches, it
will be necessary to install the pipe by other methods.  In these cases, pipe may be pushed,
jacked, bored, tunneled or microtunneled into place.  A casing pipe will normally be required for
sewers installed using these methods except for microtunneling in which rigid pipe is pushed,
jacked, bored, or tunneled into place.  A casing pipe will always be required to protect sewers
under railroads, primary access roads, and airfield pavements.  The void space between the
sewer pipe and casing will be filled with special aggregates capable of being blown into place, or
with commercially available polyethylene or other type spacers, saddles, and seals.  Depending
on soil resistance, rigid extra strength pipe can be forced underground by machine for distances
of 15 to 45 meters (50 to 150 feet). Commercially available machines used hydraulic power to
produce forces ranging from 29 to 670 kilonewtons (6500 to 150,000 pounds).  Horizontal boring
(augering) and reaming machines placed in excavated pits simultaneously remove material and
hydraulically jack extra strength pipe through the ground in sizes up to 900 millimeters (3 feet) in
diameter.

     f.  Anchoring Sewers.  Normally sewers do not have to be anchored in place.  However large lines laid
underwater or below the high groundwater level may have to be anchored, using saddles and piling or
concrete, to avoid floating.  Guidance from the pipe manufacturer should be used in designing anchoring
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systems.  Due to its weight concrete pipe minimizes but may not eliminate the need to be anchored to
prevent floating.

     g.  Design guidance.  The methods and procedures described in WEF Manual of Practice No.
9 for designing sewer installations in unsatisfactory soil, rock, embankments, microtunneling, and
by tunneling, microtunneling, jacking, boring, etc., will be adopted.  Sewer piping installed in
areas subject to earthquake damage will include seismic design as required by TM
5-809-10/AFM 88-3, chapter 13.  Cold region facilities will be designed in accordance with TM
5-852-5.



CEMP-E EI 11C201
1 March 1997

6-1

CHAPTER 6

PUMPING STATION AND EQUIPMENT

6-1.  TYPE OF CONSTRUCTION.  A classification of pumping stations by capacity and the
method of construction normally utilized for that capacity is provided in Table 6-1.  Factory
assembled pumping stations, commonly referred to as package type stations, are manufactured
in standard sizes and are shipped from the factory in modules with all equipment and
components mounted, installed, and ready for connection.  These type stations will be suitable
for low flows, and where the need to protect pumps from clogging is minimal.  Conventional field
erected pumping stations are designed for a particular location and to meet specific
requirements.  Field constructed stations will be used where the quantity of flow or its variation,
or both, exceeds the capacity of available factory assembled stations, or where site conditions
require the use of special designs or construction methods.

              Table 6-1. Classification of Pumping Stations.

                                     *         Recommended Capacity Range
      Class/Type                     *                           L/s(gpm)

                                     *
Factory Assembled (Package Type)    *
  Pneumatic Ejectors               * 2-13     (30-200)
  Wet Pit Submersible Pumps         * 6-30    (100-500)
  Dry Pit Pumps                     * 6-125   (100-2,000)
Conventional Field Erected         *
  Small                              *18-95    (300-1,500)
  Intermediate                       *95-630  (1,500-10,000)
  Large                              *over 630  (over 10,000)

Note:  Package type, dry pit pump stations in the capacities shown are generally available
off-the-shelf.  However, station   capacities up to 315 liters per second (5,000 gallons per minute)
can be obtained by special order.

6-2.  PUMPS.

     a.  Centrifugal pumps.  The centrifugal pump is the predominate type of wastewater pump
used. These pumps are available in three variations, radial flow, mixed flow, and axial flow. 
Centrifugal pumps will not be used in capacities of less than 6 liters per second (100 gallons per
minute).
     
         (1) Radial flow pumps.  The radial flow centrifugal pump is the major type used for pumping
raw wastes.  In a radial flow pump, the fluid enters the impeller axially and is discharged at right
angles to the shaft.  Two types of radial flow pumps are available, single suction and double
suction.  In a single-end suction pump, fluid enters the impeller from one side.  The shaft does
not extend into the suction passage, and because of this, rags and trash do not clog the pump. 
The single-end suction pump will be suitable for handling untreated wastewater.  For a double
suction pump, fluid enters the impeller from both sides, however the shaft extends into the
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suction passage, thereby limiting its use to handling only clear water.  Radial flow centrifugal
pumps are available in discharge sizes of 50 to 500 millimeters (2 to 20 inches).  However,
pumps with a capacity to pass 75-millimeter (3-inch) minimum solids will be required.  The
recommended capacity range for these pumps is 6 to 1,260 L/s (100 to 20,000 gpm).  Pumps are
available in discharge heads of 8 to 60 meters (25 to 200 feet) total dynamic head (TDH).  Peak
design efficiency ranges from 60 percent for smaller pumps to 85 percent for larger pumps. 
Radial flow pumps are suitable for either wet well or dry well applications.  They can be installed
with horizontal or vertical shafting, however, vertical shaft pumps require considerably less
space.
     
         (2)  Mixed flow pumps.  The mixed flow centrifugal pump is an intermediate design
between the radial flow type and the axial flow type, and has operating characteristics of both. 
The mixed flow pump is designed with wide unobstructed passages, and is therefore suitable for
handling wastewater or clear water.  Mixed flow centrifugal pumps are available in 200-millimeter
through 2100-millimeter (8-inch through 84-inch) discharge sizes.  The recommended capacity
range for these pumps is 60 to 5,000 L/s (1,000 to 80,000 gpm). Pumps are available to operate
at 3 to 18 meters (10 to 60 feet) TDH.  Peak design efficiency depends on the size and
characteristics of the individual pump, but generally ranges from 80 to 90 percent.  Mixed flow
pumps are used only in dry well applications, with either horizontal or vertical shafting
configuration.

         (3)  Axial flow pumps.  Axial flow centrifugal pumps will not be used to pump raw untreated
wastewater.  This pump is designed primarily for clear water service and for wet well
installations.  The pump is furnished with vertical shaft having a bottom suction, with the
propeller mounted near the bottom of the shaft and enclosed in a bowl.  The propeller is totally
submerged and can be clogged by large solids, rags or trash.  Therefore, this pump will only be
used for clear well applications.  Axial flow centrifugal pumps are available in 200-millimeter
through 1800-millimeter (8-inch through 72-inch) discharge sizes.  The recommended capacity
range for these pumps is 30 to 6,300 L\s (500 to 100,000) gpm.  Pumps are available to operate
from 0.3 to 12 meters (1 to 40 feet) TDH.     

         (4)  Pump construction.  Centrifugal wastewater pumps will normally be constructed of cast
iron with bronze or stainless steel trim, and with either cast iron or bronze impellers.  When
operating in wastewater containing substantial quantities of grit, impellers made of bronze, cast
steel or stainless steel will be required.  Enclosed impellers will be specified for waste water
pumps required to pass solids.   Pump casings of the  volute type will be used for pumping raw
untreated wastes and wastewaters containing solids.  Diffusion or turbine type casings may be
utilized for effluent or clear water service at waste treatment facilities.  Pump shafts will be high
grade forged steel, and will be protected by renewable bronze or stainless steel sleeves where
the shaft passes through the stuffing box.  Stuffing boxes will utilize either packing glands or
mechanical type seals.
     
       (5)  Stuffing box seals.  The stuffing box will be lubricated and sealed against leakage of
wastewater (into the box) by grease, potable water, or another clear fluid.  The lubricating and
sealing medium will be supplied to the stuffing box at a pressure of 35 to 70 kPa (5 to 10 psi)
greater than the pump shutoff head.  Grease seals are usually provided by cartridges which are
either spring loaded or pressurized by connections off the pump discharge.  These arrangements
generally do not maintain sufficient seal pressure on the stuffing box.  However, they will be
acceptable for low head pumps and where the wastewater contains little grit, as when pumping
treated effluent.  When pumping raw untreated wastes containing the usual quantities of grit, a
potable water seal system with seal pump will be required if a potable water line is accessible
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within a reasonable distance.  The water seal system will be capable of supplying 0.2 L/s (3 gpm)
per pump minimum.  The principal advantage of a water seal over a grease seal is the positive
pressure maintained on the stuffing box by the seal pump, and small amount of water which
flows from the stuffing box into the pump casing.  Grit and other abrasive materials that may be
in the wastewater are thereby prevented from entering the stuffing box, thus reducing wear on
the shaft and packing.  The advantage of less frequent repairs to the shaft and less frequent
repacking should be considered in relationship to the cost of providing the water line and other
necessary facilities for the water seal.  Where freezing of seal water is likely to occur, protective
measures will be taken.  There must not be, under any circumstances, a direct connection
between wastewater pumps and the potable water system, nor any possibility of backflow of
wastes into the potable water system.  Air Force facilities will comply with AFM 85-21.
   
     b.  Screw pumps.  The screw pump is classified as a positive displacement pump, and as
such, maintains two distinct advantages over centrifugal pumps.  It can pass large solids without
clogging, and can operate over a wide range of flows with relatively good efficiencies.  Screw
pumps are normally available in capacities ranging from 10 to 3150 L/s (150 to 50,000 gpm) with
a maximum lift of 9 meters (30 feet). Because of its nonclog capabilities and wide pumping
range, the screw pump is best suited for lifting raw untreated wastewater into the treatment
facility, and for the pumping of treated effluent.  Its use in sludge pumping is discussed in TM
5-814-3/AFM 88-11, Vol. 3.  Also, when treatment plants are upgraded, screw pumps may be
installed to overcome the additional head losses created by new treatment units, so that existing
discharge facilities can be retained.  Screw pumps are usually driven by a constant speed motor
with gear reducer, and are inclined at angles of 30 to 38 degrees from the horizontal.  In most
instances, screw pumps will be installed outdoors with only the drive unit enclosed.
 
     c.  Pneumatic ejectors.  Pneumatic ejector stations will generally be used only in situations
where quantities of wastes are too small for more conventional pumps, and where future
increases in waste flows are projected to be minimal.  A pneumatic ejector consists of a
receiving tank, inlet and outlet check valves, air supply, and liquid level sensors.  When the
wastewater reaches a preset level in the receiver, air is forced in ejecting the wastewater.  When
the discharge cycle is complete, the air is shut off and wastewater flows through the inlet into the
receiver.  Generally, duplex ejectors operate on a 1-minute cycle, filling for 30 seconds and
discharging for 30 seconds.  Thus, each receiver tank will be equal in volume to 30 seconds of
the extreme peak flowrate.  Pneumatic ejector stations are available in capacities ranging from 2
to 13 L/s (30 to 200 gpm) with recommended operating heads up to 18 meters (60 feet) TDH.  A
typical ejector installation will include duplex units with two compressors, receivers, level
sensors, etc.
  
     d.  Grinder pumps.  Grinder pumps shred solids normally found in domestic wastewater,
including rags, paper and plastic, into a slurry.  The slurry can be pumped under low head
through pressure sewers as small as 32 millimeter (1-1/4 inches) in diameter.  Grinder pumps
are for submersible installation, with a recommended operating range of 0.6 to 6 L/s (10 to 100
gpm).  These pumps are available in discharge heads of 3 to 45 meters (10 to 150) feet TDH. 
The peak design efficiency is generally very low.  Grinder pumps will be used only to handle
domestic type wastes from one or more individual buildings, and only in remote areas or areas
where gravity sewers and centralized pumping facilities are not feasible (see paragraph 1-3b).

6-3.  PUMP DRIVES.
  
     a.  Electric motors.  As a general rule, electric motors will be provided as the primary drive
unit in sanitary and industrial wastewater pumping stations.  Small pump stations serving remote
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areas where electric power is not available, will usually require engine drives.  The three types of
electric motors most commonly used in wastewater pumping are  (1) squirrel-cage induction, (2)
wound-rotor induction, and (3) synchronous.  Squirrel-cage induction motors will normally be
selected for constant speed pump applications because of their simplicity, reliability and
economy.  They can also be used for variable speed operation when provided with the proper
speed control.  Synchronous motors may be more economical for large capacity, low rpm,
constant speed pumps.  Wound-rotor induction motors are most commonly used for pumps
requiring variable speed operation.  For a 60 cycle, alternating current power supply, the
maximum synchronous motor speed allowed for wastewater pumps will be 1800 rpm
(approximately 1770 rpm induction speed).  The normal range of speeds is from 600 to 1200
rpm, with speeds below 450 rpm unusual at military installations.  Lower speed pumps and
motors are larger and more expensive, but generally are more reliable. The selection of electric
motors will depend upon the type, size and location of the pumps, type of speed control used,
and the power available at the site.  Pump location will determine the type of motor enclosure.
For dry pit pump installations, motor enclosures will normally be the open, drip proof type. 
Pumps installed outdoors, or in dirty or corrosive environments, will require totally enclosed
motors.  Submersible pumps will have motor enclosures which are watertight.  Motors installed
outdoors will have temperature ratings adjusted to suit ambient operating conditions.  For pumps
designed to operate on an intermittent basis, space heaters will be provided in motor housings to
prevent condensation.  Motors installed in wet wells will be explosion proof. Motor starting
equipment will be selected in accordance with paragraph 7-3, and will be suitable for the type of
motor and the required voltage.  Motor starters will be designed for limiting the inrush current
where shocks or disruptions to the electrical supply are likely to occur as a result of pump
start-up.  Where low starting inrush current is required for constant speed pumps, such as when
using engine driven generator sets, wound-rotor motors will be considered as an alternative to
squirrel-cage motors.  The voltage required for operation of motors and other equipment will be
determined in accordance with paragraph 9-6.
   
      b.  Internal combustion engines.  Internal combustion engines (I.C.) engines  will be used
primarily at large pumping stations where electric motors are the primary drive units, and where
emergency standby facilities are required.  Conditions which dictate the use of fixed, standby
power at wastewater pumping stations are outlined in paragraph 9-7.   I.C. engines will be
required for small pump stations in remote locations where no electric power source exists.  At
large wastewater treatment plants where abundant digester gas is produced, it will generally be
more feasible to use I.C. engines which are fueled by the waste gas. I.C. engines may be
arranged to drive horizontal pumps by direct or belt connections, or they may drive vertical
pumps through a right angle gear drive with an electric motor as the primary drive unit (dual
drive).  It is more common however, and will be the general rule at large pump stations, to
provide fixed emergency generator sets powered by I.C. engines.  Generators produce electric
power not only for pumps, but also for auxiliary equipment such as heaters, lights, alarms, etc.,
and for critical pump control systems.  The types of internal combustion engines normally used
include (1) diesel, (2) gasoline, (3) natural gas, primarily digester gas, and (4) dual-fuel diesel. 
The use of gasoline engines for anything except small, remotely located pumping stations is not
recommended due to the hazards associated with fuel handling and storage. Dual-fuel diesel
engines fire a mixture of diesel oil and natural gas, with a minimum of 10 percent diesel fuel
required to ignite the mixture.  Propane is usually provided as a backup fuel for gas and dual-fuel
diesel units.  The selection of I.C. engines will be coordinated with the installation's Facility
Engineer to insure that adequate operation and maintenance can be made available. 
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6-4.  DRIVE MECHANISMS.

     a.  Direct drive.  Direct drive, with the shaft of the drive unit directly connected to the pump
shaft, is the most common configuration. This connection can be either close-coupled or
flexible-coupled.  When using a close-coupled connection, the pump is mounted directly on the
drive shaft.  This is the normal arrangement for a vertical pump driven by an electric motor.  A
horizontal pump will usually have a flexible connection, with the engine mounted adjacent to the
pump.  A vertical motor mounted above, and at a distance from a vertical pump, will be
connected to the pump with one or more lengths of flexible shafting. Direct drive offers the most
efficient operation because no power is lost between the drive unit and the pump.    

     b. Belt drive.  Belt drives may be utilized if the pump speed is different from those available
with standard drive units, or if speed adjustment is required.  Speed adjustment is accomplished
by changing pulley or sheave ratios.  Belt drives used with horizontal pumps require more floor
space than a direct drive unit.  There is power loss through the belt, which results in lower
efficiency, and belt wear increases maintenance requirements.  Belt drives will be used only
when it is not possible to choose single speed equipment to cover service conditions, or where
pump speed adjustments may be required, but variable speed operation is not.   

     c.  Right angle drive.  Right angle drives will be used on vertical pumps being driven by
horizontal engines.  If the engine serves as emergency standby, a combination gear box will be
installed on the angle drive to allow operation of the pump by the primary drive unit, which is
normally an electric motor.  A clutch or disconnect coupling disengages the right angle gear
when the motor drives the pump.  When the engine drives the pump, the clutch is engaged and
the motor rotates freely.  In case of a power failure the engine is automatically started, and after
reaching partial operating speed is engaged to drive the pump.

6-5.  PUMP CONTROLS AND INSTRUMENTATION.
   
     a.  Mode of operation.  Wastewater pumps will be designed to operate in one of the following
modes: (1) constant speed, (2) adjustable speed, or (3) variable speed.  The type of speed
control system will be selected accordingly.  As indicated in paragraph 6-3a, the type of speed
control required will influence the type of electric motor to be used.
      
         (1)  Constant speed.  Constant speed drive is the simplest, most reliable, and most
economical mode of operation, and will be suitable for the majority of wastewater pumping
applications at military installations.  However, where there is a need to match pumping rates
with the incoming wastewater flowrates, a variable speed drive will usually be more appropriate.

         (2)  Adjustable speed.  By changing pulley or sprocket ratios on a belt driven pump, the
speeds can be adjusted to accommodate several constant speed pumping rates.  This type of
system will be used mainly in sludge pumping, but can be a good alternative to variable speed
control in wastewater pumping when speed adjustment is not required too often. Where
automatic operation is needed pulleys or sheaves can be positioned through the use of
pneumatic, hydraulic or electric devices.
         
          (3) Variable speed.  Variable speed operation will usually be required at large pumping
stations where the entire wastewater flow, or major portions thereof, must be pumped to the
treatment facility, and where it is desired to match the incoming flowrates in order to maintain a
smooth, continuous flow into the plant.  Pumping stations will normally require more pumps
under a constant speed system than one utilizing variable speeds.  Also, the size of the wet well
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can be reduced greatly when pumps operate on a continuous basis.  Variable speed operation is
less efficient than constant speed when pumping at reduced rates, however friction losses and
thus power costs are generally less for the smaller flows.

     b.  Speed control systems.  The selection and design of the speed control system will be
coordinated closely with the selection of the pump and drive units.  The simplest system which
allows pumps to accomplish the required hydraulic effects will be chosen for design.  Factors to
be considered in selecting a system include cost, efficiency, reliability, structural requirements,
ease of operation and degree of maintenance necessary.  The last two items are critical at
military installations where adequate personnel cannot always be provided. Pumping stations will
normally be designed for automatic on/off operation of the pumping units, with manual override
by push-button or selector switch.

         (1) Constant and adjustable speed.  Most automatic constant speed and adjustable speed
systems will operate from level signals.  Pumps are turned on as the liquid level in the wet well
rises, and are turned off when it falls.  Pumping systems utilized in treatment plant processes are
sometimes controlled by flow or pressure sensors.  Level detection systems in standard use
include the following:
        
              (a)  Float switches.  The simplest type of switch consists of a float attached to a rod or
tape, and suspended in the wet well.  The float rod opens or closes a switch, depending on the
rise or fall of the float riding on the liquid level. The float may also be suspended in a tube or
cage.  These units usually require frequent maintenance as grease, scum and debris in the
wastewater build up on the equipment.  Another type of float control incorporates a mercury
switch encapsulated in a corrosion resistant ball, and suspended by cable in the wet well.  This
unit is not dependent upon the smooth, vertical movement of a rod, and thus is not subject to the
maintenance problems described above.

              (b)  Bubbler tube.  One of the most commonly used systems employs a bubbler tube
which is suspended in the wet well and is fed by compressed air.  The back pressure on the
open end of the tube is sensed by pressure switches, and then transduced to a voltage or
current signal.  These signals are transmitted to a controller which operates the pumps.  This
system has no moving parts in contact with the wastewater, and requires very little maintenance. 
The constant flow of compressed air keeps the tube free of solids accumulations.
        
              (c)  Electrodes.  A series of electrodes are mounted at different elevations so that when
the liquid level rises and contacts an electrode, an electric circuit is energized.  Electrodes are
used primarily in pneumatic ejectors where the compressed air serves to keep the electrodes
clean.  They will not normally be used in wet wells due to frequent fouling by grease and waste
debris.

              (d)  Sonic meters.  A sonic meter measures the distance from the liquid level to the
meter.  They are difficult to install free of obstructions, and must be isolated from stray electrical
or acoustic signals.
     
              (e)  Capacitances tubes and pressure diaphragm sensors.  These types of controls will
not normally be used due to fouling by the wastes.

         (2) Variable speed.  A bubbler system will in most cases be employed to control the
operation of automatic variable speed pumps.  In these systems, the back pressure from the
bubbler tube is transduced to a pneumatic speed equipment to cover service conditions, or
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where pump speed adjustments may be required, but variable speed operation or electronic
signal for use in on/off and variable speed control of the pumps.  On/off controls are usually
provided by pressure or electronic switches.  Variable speed control devices consist of (1)
magnetic (eddy current) clutches, (2) liquid clutches, (3) variable voltage controls, (4) variable
frequency controls, and (5) wound-rotor motor controls.  Magnetic and liquid clutches have been
available for many years as controllers for variable speed pumps.  These older methods are
inefficient in that the slip losses which developed are lost as heat.  The recent development of
solid state electronics has led to the introduction of newer methods of variable speed control
suitable for both squirrel-cage and wound-rotor induction motors.  The variable voltage and
variable frequency controls are  suitable for use with squirrel-cage rotors.  Variable frequency
drives are possible in efficiencies up to 95 percent, and are available in sizes up to 250 hp. 
However, variable voltage units are inefficient and are not recommended.  Wound-rotor motor
controls come in five categories, (l) fixed step resistors, (2) liquid rheostats, (3) reactance/
resistance controllers, (4) electronic rheostats, and (5) regenerative secondary controls.  Of
these, the regenerative secondary control offers the best efficiency, while the other units are
considerably less efficient and require more maintenance.  In general, variable speed control
devices are more expensive, less efficient, and require a higher degree of maintenance than
constant speed controls.
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CHAPTER 7

PUMPING SYSTEM DESIGN

7-1.  FORCE MAIN HYDRAULICS.

     a.  General.  The pipeline which receives waste-water from a pumping station, and conveys it
to the point of discharge, is called a force main.  Force mains will be designed as pressure pipe,
and must be adequate in strength to withstand an internal operating pressure equal to the pump
discharge head, plus an allowance for transient pressures caused by water hammer. The internal
operating pressure is maximum at the pumping station, and is reduced by friction to atmospheric,
or near atmospheric, at the point of force main discharge. The primary consideration in the
hydraulic design of force mains is to select a pipe size which will provide the required minimum
velocities without creating excessive energy losses due to pipe friction.  The most economical
size of force main should be determined on the basis of power costs required for pumping, and
capital investment costs of piping and equipment.  In practice however, the size is usually
governed by the need to maintain minimum velocities at low flows to prevent deposition of solids,
and to develop sufficient velocity at least once a day to resuspend any solids which may have
settled in the line.  However, regardless of pipe sizes required for minimum velocities, the
minimum diameters to be used are 32-millimeter (1-1/4-inch) for pressure sewers at grinder
pump installations, 100-millimeter (4-inch) for force mains serving small pump stations and
pneumatic ejectors, and 150-millimeter (6-inch) for all other force mains.

     b.  Design formula and chart.  Force mains will be designed hydraulically with the use of the
Hazen-Williams formula as follows:

      V  =  K C R  S0.63 0.54

where:

K =  0.85 for SI units (1.32 for IP units)
V =  velocity in meters per second (feet per second)
C =  coefficient of pipe roughness
R =  hydraulic radius in meters (feet)

 S =  slope of energy grade line in meters per meter (feet per foot)

         (1)  Roughness coefficient.  Values of C to be used in the formula range from 100 for older
force mains which have been in service a number of years (usually over 10), to 140 for force
mains which are newly constructed.  Some manufacturers of plastic and asbestos-cement pipe
report C values as high as 150.  However, due to uncertainties in design and construction, plus a
desire to provide a margin of safety, C values greater than 140 will not normally be permitted.  At
some installations, force mains may be very old (40 to 50 years) and in extremely bad condition,
with offset joints, broken pipe, or materials encrusted on pipe walls.  For these cases, lower C
values may be justified. However, values lower than 80 will not be allowed unless verified by flow
and pressure tests.

         (2)  Velocity.  Velocity criteria for force mains are based on the fact that suspended organic
solids do not settle out at a velocity of 0.6 meter per second (2.0 feet per second) or greater. 
Solids will settle at velocities less than 0.3 m/s (1.0 fps) and when wastewater pumps are idle. 
However, a velocity of 0.75 to 1.00 m/s (2.5 to 3.5 fps) is generally adequate to resuspend and



EI 11C201 CEMP-E
1 March 1997

7-2

flush the solids from the line.  Force mains serving small pump stations, which are designed to
operate on an intermittent basis, will be sized to provide a minimum velocity of 1 m/s (3.5 fps) at
the peak discharge rate.  For small stations having flows too low to warrant a minimum velocity
of 1 m/s (3.5 fps) with one pump operating, the design may call for both pumps to be operated
manually once a week for a sufficient period of time to flush out the line.  Larger stations having
three or more pumping units, which operate a major portion of the time, will require minimum
force main velocities ranging from 0.6 m/s (2.0 fps) with one pump operating, to 1.5 m/s (5.0 fps)
with several pumps operating.  In these cases, it is only required that a minimum velocity of 0.75
to 1.00 m/s (2.5 to 3.5 fps) be provided once or twice daily.  Large pumping stations which serve
the entire installation or major portions thereof, and which are designed to pump continuously,
will usually have a greater number of pumps operating over a wider range of flowrates.  Since the
pumping range may vary from 7 or 8 to 1, it will generally be sufficient to design for velocities of
0.15 up to 2.00 or 2.50 m/s (0.5 up to 7.0 or 8.0 fps).  Maximum velocity is set at 3 m/s (10.0
fps).

         (3)  Slope.  The value of S in the formula is equivalent to the kinetic energy loss due to pipe
friction divided by the length of conduit, or S = H /L.  Minor energy losses from fittings and valvesf
will be converted to equivalent lengths of conduit for use in the formula.  Conversion tables for
fittings and valves can be found in standard hydraulics textbooks.  The total kinetic energy loss in
a force main will be computed by multiplying the slope of the energy grade line by the total length
of conduit including equivalent lengths, or H  = S x L.f

7-2.  PUMP ANALYSIS AND SELECTION.

     a.  Total dynamic head.  The head in feet against which a pump must work when wastewater
is being discharged is termed the total  dynamic head (TDH).  The two primary components of
TDH in wastewater applications are the static discharge head and the kinetic losses due to pipe
friction.  Velocity and pressure heads are also present, but are usually insignificant.  The TDH will
be calculated with the use of the Bernoulli energy equation which can be written as follows:

  TDH  =    (P /W + V /2g + Z ) - (P /W + V /2g +Z ) + Hd d d s s s f
2 2

where

P , P = gage pressures in kiloPascals (pounds per square foot)d s
V , V = velocities in meters per second (feet per second)d s
Z , Z = static elevations in meters (feet)d s

 H = kinetic energy loss in meters (feet)from pipe friction, fittings, and valves, as f
      calculated in paragraph 7-1b(3)

 w = specific weight of fluid in kilonewtons per cubic meter (pounds per cubic foot)
     g = acceleration due to gravity, 9.80 m/  (32.2  ft/ )sec. sec.

All head terms are in meters (feet).  Subscripts  and  represent force main discharge and pumpd s
suction, respectively.  In order to determine hydraulic conditions at the pump suction, it will be
necessary to write an energy equation from the liquid level in the wet well to the pump suction
nozzle.

     b.  System head-capacity curve.  To determine the head required of a pump, or group of
pumps that would discharge at various flowrates into a force main system, a head-capacity curve
must be prepared.  This curve is a graphic representation of the total dynamic head, and will be
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constructed by plotting the TDH over a range of flowrates from zero to the maximum expected
value.  Friction losses can be expected to increase with time, thus affecting the capacity for the
pumping units and their operation.  Therefore, system curves well reflect the maximum and
minimum friction losses to be expected during the lifetime of pumping units, as well as high and
low wet levels.  The typical set of system curves will generally consist of two curves using a
Hazen-Williams coefficient of C = 100 (one for maximum and one for minimum static head), and
two curves using a Hazen-Williams coefficient of C = 140 (for maximum and minimum static
head).  These coefficients represent the extremes normally found in wastewater applications.

     c.  Pump head-capacity curve.  The head that a particular pump can produce at various
flowrates is established in pump tests conducted by the pump manufacturer.  The results of
these tests are plotted on a graph to form the pump characteristic curve.  Along with the
discharge head developed, the pumps operating efficiency, required power input, and net
positive suction head are generally included on the same diagram.  Additional information on
pump curves and pump design is available in TM 5-813-9.  Software is also commercially
available for personal computers to aid in the design of pumping systems and the selection of
pumps.

        (1)  Efficiency and power input.  Pump efficiency is the ratio of the useful power output to
the power input, and is given by:

    E   =     wQ TDH
                )))))))
          P K

where:

          E =   pump efficiency (100 E = percent)
          w =   specific weight of fluid in kilonewtons per cubic meter (pounds per cubic foot)
          Q =   pump capacity in cubic meters per second (cubic feet per second)
        TDH =  Total dynamic head in meters (feet)
          P =  power in kilowatts (brake horsepower)
          K =  constant, 1 for SI units (550 for IP units)

Pump efficiencies usually range from 60 to 85 percent.  Most characteristic curves will indicate a
best efficiency point (BEP) at which pump operation is most efficient.  Where possible, pumps
will be selected to operate within a range of 60 to 120 percent of the BEP.  

         (2)  Net positive suction head.  When pumps operate at high speeds and at capacities
greater than the BEP, the potential exists for pump cavitation. Cavitation can reduce pumping
capacity and may in time damage the pump impeller.  Cavitation occurs when the absolute
pressure at the pump inlet drops below  the vapor pressure of the fluid being pumped.  To
determine if cavitation will be a problem, the net positive suction head (NPSH) available will be
computed, and compared with the NPSH required by the pump.  The NPSH is not normally a
problem when discharge heads are less than 18 meters (60 feet).  However, when heads are
greater than 18 meters (60 feet), or when the pump operates under a suction lift, or far out on its
curve, the NPSH will be checked.  The NPSH available at the eye of the impeller in meters (feet)
will be calculated with the following formula:

    NPSH  = H  + P /w - P /wA s a v
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where:

     H  =   total energy head in meters (feet)at the pump suction nozzles
     =   P /w + V /2g + Zs s s

2

    Pa =   atmospheric pressure in KiloPascals (pounds per square foot) absolute, and
     Pv =   vapor pressure of fluid being pumped in KiloPascals (pounds per square foot) 

          absolute.

      (3)  Affinity laws.  A set of relationships derived from flow, head and power coefficients for
centrifugal pumps, can be used to determine the effect of speed changes on a particular pump. 
These relationships are known as affinity laws and are as follows:

     Q /Q     =   N /N1 2 1 2

     H /H    =   N /N1 2 1 2
2 2

     P /P     =   N /N1 2 1 2
3 3

where:

    N , N  = pump speeds in revolutions per minute (rpm).1 2

Q, H, and P terms represent pump capacity, discharge head, and power output respectively, at
speeds N  and N .  These relationships will be used in analyzing variable speed pump operation1 2
in the absence of manufacturer's characteristic curves, or where characteristic curves do not
show performance at the desired speeds.

     d. Pump selection.  System analysis for a pumping station will be conducted to select the
most suitable pumping units which will meet service requirements, and to determine their
operating points, efficiencies, and required power.

         (1)  Single pump operation.  A system head-capacity curve will be prepared  showing all
conditions under which the pump is required to operate.  The system curve will then be
superimposed onto a pump head-capacity curve, or characteristic curve, to define the pump
operating point.  The point where the two curves intersect represents the head and capacity at
which the pump will operate in the given piping system.

         (2) Multiple pump operation.  Where two or more pumps discharge into a common header,
the head losses in individual suction and discharge lines will be omitted from the system
head-capacity curve.  This is because the pumping capacity of each unit will vary depending
upon which units are in operation.   In order to obtain a true picture of the output from a multiple
pump installation, the individual suction and discharge losses are deducted from the pump
characteristic curves.  This provides a modified curve which represents pump performance at the
point of connection to the discharge header.  Multiple pump performance will be determined by
adding the capacity for points of equal head from the modified curve.  The intersections of the
modified individual and combined pump curves with the system curves give the total discharge
capacity for each of the several possible combinations.  Pumps will be selected so that the total
required capacity of the pump installation can be delivered with the minimum level in the wet well
and maximum friction in the discharge line.  Pump efficiency will be a maximum at average
operating conditions.
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7-3.  PUMP CONTROLS.

     a.  General.  Instrumentation at a pumping station includes automatic and manual controls
used to sequence the operation of pumps, and alarms for indicating malfunctions in the pumping
system.  Automatic control of pumps will usually be based on the liquid level in the wet well. 
Paragraph 6-4 contains a discussion of the various modes of pump operation, pump control
systems, and a description of level detection devices.  Manual control of pumps is always
required in order to operate the pumps during emergencies, for maintenance purposes, or when
automatic systems fail.  Manual override will be set to bypass the low level cut-off, but not the
low level alarm.

     b.  Selection of control points.  A control range of at least 1 meter (3.0 feet) is required
between maximum and minimum liquid levels in the wet well.  A minimum of 150 millimeters (6
inches) will be required between pump control points used to start and stop successive pumps,
or to change pump speeds.  For small stations, the control range may be less, however control
points will not be set closer than 75 millimeters (3 inches).

         (1)  Constant or adjustable speed pumps require simple on-off switches to start or stop
pumps, or to change from one speed step to the next.

         (2)  Variable speed pumps require a more complex control arrangement.  The two basic
types of level control for variable speed operation are (a) variable level, and (b) constant level. 
For variable level control, a narrow band of control points is established in the wet well.  Pump
speed is then adjusted in steps by the level detection system (usually a bubbler tube) as the level
varies. Pumps operate at maximum speeds near the HWL, and at minimum speeds near the
LWL.  However, pumps are started and stopped by level switches.  Constant level control is
seldom used, but may be required where a very narrow band of operation is necessary.  In a
constant level system, one level is set as the control point, and pump speed is adjusted in a step
less fashion as the liquid level rises above, or falls below this point.
  
     c.  Alarms.  Alarms will be provided to signal high and low liquid levels in the well, pump
failure, or a malfunctioning speed control system.  The high level alarm will be set above the start
point of the last pump in the operational sequence, but below the start point of the standby pump,
if used.  The low level alarm will be set below the shutoff point of the lead pump. An emergency,
low level pump cutoff will be set below the low level alarm.

7-4.  PUMP SCHEDULING AND OPERATIONS.  Reliability of a pump station is a critical part of
design and operation.  The number of pumps depends on present and future needs.  An
economic analysis should be performed to determine the number of pumps to be installed.  In
smaller stations a single pump may be most economical to meet the peak demand.  However
whenever a single pump is sufficient, two equal size pumps, each able to handle the peak
demand, must be provided and set-up to alternate.  Whenever two or more pumps are cost-
effective to meet the peak demand, additional pump capacity or pumps must be installed so that
peak demand can be met with the largest pump out of service.  All pumps should alternate.  
7-5.  WET WELL DESIGN.

     a.  General.  Wet wells will be constructed at pumping stations for the purpose of storing
wastewater flows prior to pump operation. The storage volume required depends upon the
method of pump operation, i.e., whether pumps are constant, adjustable or variable speed.  In
addition to providing adequate storage volume, wet wells will be designed to (1) allow for proper
pump and level controls, (2) maintain sufficient submergence of the pump suction inlet, (3)
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prevent excessive deposition of solids, and (4) provide ventilation of incoming sewer gases.  In
smaller stations, bar racks or comminuting devices may be installed within the wet well in order
to reduce costs.  Overflows from wet wells are prohibited in all cases.
   
     b.  Storage volume.  If pumps are of constant or adjustable speed type, the wet well volume
must be large enough to prevent short cycling of pump motors.  For pumps driven by variable
speed drives, the storage volume may be small provided pumping rates closely match the
incoming flowrates.  The volume required for the wet well will be computed with the following
formula:
     
     V =   tq/4

where:

    V =   required volume in liters (gallons) between start and stop elevations for a 
    single pump, or a single speed step increase for adjustable or variable speed 
    operation  

t =   minimum time in seconds (minutes) of one pumping cycle (time between 
     successive pump starts), or time required for a speed or capacity change, and 

  
q =   pumping capacity, or increment in capacity where one or more pumps are 
      operating and an additional pump is started, or where pump speed is 

      increased, in liters per second (gallons per minute).

Constant or adjustable speed pumps driven by squirrel-cage induction motors will be designed
for minimum cycle times as shown in the following table.

Table 7-1. Minimum Pump Cycle Times

              
             Motor size, kW (bhp)  * t, minutes
             Less than 15 (20)       * 10 to 15
             15 to 75 (20 to 100)  * 15 to 20
             75 to 185 (100 to 250) * 20 to 30
             Over 185 (250)         * as recommended by
                                     * manufacturer

The storage volume calculated for small stations (capacities less than 45 L/s (700 gpm)) which
utilize two identical constant speed pumps, may be reduced one half by providing a control circuit
to automatically alternate the pumps.  The storage volume required for variable speed pumps will
be based on providing sufficient time for a change in capacity when a pump is started or
stopped.  When a pump is started the motor must be ramped to the desired speed, and the
pumps already in operation must be reduced in speed.  The time required for this is usually less
than 1 minute. A considerable amount of storage is normally available in large sewers which
serve stations utilizing variable speed pumps.  This volume may be considered in design by
calculating backwater curves for the various operating levels.  The maximum retention time in the
wet well will not exceed 30 minutes to prevent septic conditions.
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     c.  Suction pipe connections.  Pump suction piping will be selected to provide a velocity of 1.2
to 1.8 meters (4 to 6 feet) per second.  Pipe should be one or two sizes larger than the pump
suction nozzle.  Vertical pumps installed in a dry well which is adjacent to the wet well, will be
fitted with a 90 degree suction elbow, followed by an eccentric reducer and a gate valve.  The
suction line will be extended through the wall into the wet well, and terminated with either a 90 or
45 degree flared elbow, or an elbow with a flared fitting.  The most commonly used piping
arrangements are illustrated in figure 7-1, where D is the diameter of the flared inlet, and S is the
submergence depth.  Adequate submergence of the suction inlet is critical to prevent air from
being drawn in by vortexing.  Minimum required submergence depths are given in table 7-2 as a
function of velocity.  The net positive suction head (NPSH) will also be considered when
determining S.  See paragraph 7-2c (2).



EI 11C201 CEMP-E
1 March 1997

7-8

Figure 7-1. Pump Suction Connections to Wet Well.

Table 7-2. Required Submergence Depth to Prevent Vortexing.

      Velocity at diameter D, m/s (fps)        * S, meters (feet)
                    0.6 (2)                   *      0.30 (1.0)
                    1.2 (4)                   *      0.79 (2.6)
                    1.5 (5)                    *      1.04 (3.4)
                    1.8 (6)                    *      1.37 (4.5)
                    2.1 (7)                    *      1.74 (5.7)
                    2.4 (8)                    *      2.16 (7.1)
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Larger, conventional type pump stations will normally be constructed with wet wells divided into
two or more sections, or compartments, so that a portion of the station can be taken out of
service for inspection or maintenance.  Each compartment will have individual suction pipes, and
will be interconnected with slide or sluice gates.  The floor of the wet well will be level from the
wall to a point 300 to 450 millimeters (12 to 18 inches) beyond the outer edge of the suction bell,
and then will be sloped upward at a minimum 1:1 slope.

7-6.  CAVITATION.

     a.  Cavitation is a term used to describe a phenomenon that may occur in a pumping
installation and may occur in piping systems because of liquid velocity changes.  Cavitation in
centrifugal pumps is explained in TM 5-813-5/AFM 88-10, Vol. 7.  Cavitation in pipe lines may
take place at sudden enlargements of the pipe cross section, at sharp bends, or similar
situations.  The designer should avoid the following conditions for centrifugal pumps:

(1) Operating heads much lower than rated head at peak efficiency of the pump.  

     (2)  Operating capacities much higher than rated capacity at peak efficiency of the pump.

 (3) Suction lift higher or positive suction head lower than recommended by the
manufacturer.

    
(4) Liquid temperatures higher than that for which the system was originally designed.

(5) Pump speeds higher than manufacturer's recommendations.
   
     b.  For propeller pumps, the designer should avoid these conditions except conditions (1) and
(2) will be stated as follows:

         (1) Operating heads much higher than the peak efficiency of the pump.

         (2) Operating capacities much lower than capacity at peak efficiency of the pump. 
Cavitation will not be a problem in a pump installation if the system is designed, selected,
installed, and operated in accordance with the recommendations of the designer and the
manufacturer.  

7-7.  SURGE ANALYSIS AND CONTROL.

     a.  Water hammer.  Sudden changes in flow and velocity in force mains can occur as a result
of pump startup, pump shutdown, power failure, or rapid closing of a valve.  These velocity
changes can produce large pressure increases or surge phenomena known as water hammer.  
The most severe water hammer conditions are usually caused by a pump shutdown or power
failure.  An analysis of water hammer will include calculating the critical time, determining the
maximum pressure increase, and selecting a method of control.

     b.  Critical time.  When flow is suddenly changed in a force main, a pressure wave is
generated which rapidly travels the entire length of conduit, and back to the point of change.  The
time required for this round trip is given by:

     T  =     2L/ac



EI 11C201 CEMP-E
1 March 1997

7-10

where:

T = critical time in secondsc
L =  length of force main between point of flow change and point of discharge
a = velocity of pressure wave.

When flow is completely stopped (Q = O) in a time interval greater than T , the maximumc
theoretical pressure increase is not fully developed.  However, when flow is stopped in a time
interval less than or equal to T , the change is said to be instantaneous, and the maximumc
pressure increase is develop as
given below.

     c. Maximum pressure increase.  The maximum theoretical pressure increase or surge caused
by water hammer is calculated from the following:

     h  =     aV/gw

where:

          hw  = pressure increase in meters (feet)
          V  = velocity of fluid in the pipeline prior to flow  change in meters (feet) per second
          g  = acceleration due to gravity, or 9.80 m/  (32.2 ft/ ) at sea levelsec. sec.

          a  = velocity of pressure wave in meters (feet) per second

Some typical values of a are given in table 7-3 below.

Table 7-3. Water Hammer Wave Velocities.

           Pipe Material            *     a, m/sec (ft/sec)

    Asbestos-cement            *   820-1040  (2700-3400)
           Ductile iron               *   940-1280  (3100-4200)
           Steel                     *   820-1190  (2700-3900)
           Concrete                 *  1010-1160  (3300-3800)
           Plastic                     *   340-460  (1100-1500)
           Fiberglass                 *   370-490  (1200-1600)

     d.  Methods of control.  Whenever a pump is shut down, or power to the station fails, the
pump motor is suddenly cut off.  Pump speed along with flow and velocity in the force main are
quickly decelerated by pressure waves, which travel up the pipeline and back in accordance with
Newton's second law of motion.  When the velocity is reduced to zero, reverse flow through the
pump would occur if a gravity operated check valve or an automatic control valve were not
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installed on the pump discharge line, and did not close properly.  Reverse flow fully accelerated
through the pump could cause transient flows and pressures well above maximum design
conditions.  A swing check valve which stuck open temporarily, and then slammed shut under
these conditions, would result in a large pressure surge as given by paragraph c above.  In order
to control and limit these surge phenomena, the following practices will be followed.
     
         (1) Gravity check valves.  For simple cases involving small to medium sized pump stations
with gradually rising force mains (no intermediate high points) of less than 300 meters (1000 feet)
in length, and with static discharge heads of less than 15 meters (50 feet), a gravity operated
check valve will usually be sufficient.  Gravity type check valves may be either swing checks
utilizing outside lever and weight (or spring) set to assist closure, or then may be ball checks. 
Swing check valves are usually installed horizontally, while ball check valves may be either
vertical or horizontal.  For additional protection, a pressure relief valve may be installed in
conjunction with check valves to allow reversing flow to reenter the wet wall.  Pressure relief
valves must be specially designed for sewage applications. As an alternative to relief valves, a
hydro pneumatic tank may be utilized.

         (2) Automatic control valves.  In situations where long force mains are required, pipe
profiles must conform to existing ground elevations for economic reasons.  This normally will
result in high points in the force main, with the possibility of water column separation at the high
points during pump shutdown or power failure.  The pressures generated when these separated
columns come to rest against closed valves or against stagnant columns may be large, and are
again determined by paragraph c above. In general, where force mains are greater than 300
meters (1000 feet) in length or contain intermediate high points, and where pumping stations are
large in capacity, or static discharge heads are greater than 15 meters (50 feet), control valves
will be automatically operated (1) cone, (2) plug, (3) ball, or (4) butterfly valves.  Normal operation
of these valves upon pump shutdown, is to slowly close the valve while the pump continues to
run.  When the valve is closed, a limit switch then stops the pump motor.  On power failure, an
emergency hydraulic or other type operator closes the valve slowly.  The time of valve closure is
of utmost importance. Valves should be half closed when the velocity in the force main has
dropped to zero.  The time required to reach zero velocity can be calculated with the following
formula:

       t =   LV/gHav

where:

         t  =   time in seconds
         L =   length of force main in meters (feet)
         V =   velocity of fluid in pipeline in meters (feet) per second
         g =   acceleration due to gravity 9.80 m/sec  (32.2 ft/sec ),and2 2

        H =   average decelerating head including pipe friction in meters (feet).av

The types of valve operators most often utilized are hydraulic, electric and pneumatic.  Valves
and operators specified for use will be fully adjustable for closure times ranging from t to 4t
minimum.  In some large pumping stations, the use of automatically controlled valves alone will
not be sufficient.  Extremely long force mains (over 1.6 kilometers (1 mile)) may require very long
valve closing times, and thus result in excessive backflow to the wet well and reverse rotation of
the pump and motor.  To solve these problems, a pump bypass with surge relief valve will
generally be required.  Valves used for surge relief will be automatically controlled cone or
butterfly valves, similar to the pump discharge valves.  Normal operation upon pump shutdown
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now will require the pump discharge valve to be fully closed when the velocity has dropped to
zero.  The surge relief valve will be fully open allowing backflow to enter the wet well at a
reduced rate.  As before, the relief valve must close slowly to avoid water hammer.  Most cases
involving large pump stations with long force mains, which contain several intermediate high
points, will be too complex to solve by hand using conventional methods such as graphical
solutions, arithmetic integration, or water hammer charts.  Many computer programs are now
available for water hammer analysis, and are recommended for use in those instances.

7-8.  SCREENING AND COMMINUTING DEVICES.  Centrifugal pumps are susceptible to
clogging by rags, trash, and other debris normally found in wastewater.  To protect pumps from
clogging, equipment will be installed to screen or cut up these materials prior to pumping.  Small
pump stations with capacities of less than 13 L/s (200 gpm), including grinder pumps and
pneumatic ejectors, are exempt from this requirement.  The types of equipment to be used
include bar racks, screens, and comminutors which are installed in the wet well, or in a separate
influent channel.  The design of these facilities is covered in TM 5-814-3/AFM 88-11, Vol. 3.  At
most medium to large sized pump stations, the use of mechanically cleaned bar screens or
comminutors will be required.  However, at smaller stations in remote areas, manually cleaned
racks may be more feasible.  The smallest clear opening between bars is normally 25 millimeter
(1 inch), and spacings of less than 20 millimeters (3/4 inch) will not be permitted.  All electrically
operated equipment in wet wells will have explosion proof motors.
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CHAPTER 8

PIPING

8-1.  PIPE MATERIALS, FITTINGS, AND JOINTS.

a.  General.

     (1)  Factors to be considered in the selection of pipe materials and piping systems for
sewers or force mains are:

-Flow characteristics or friction coefficient.

-Life expectancy and history of use.

-Resistance to scour and abrasion.

-Resistance to acids, alkalis, high temperature, or corrosive wastes, and corrosive soils.

-Ease of handling and installation.

-Physical strength and pressure ratings.

-Joint water tightness and ease of installation.

-Availability of pipe in required sizes, strengths. etc.

-Availability of fittings, connections, and adapters.

Pump suction and discharge piping inside the station will normally be ductile iron or steel. 
However, other pipe materials covered in this paragraph are not precluded from use.  Pipe,
fittings, and joints serving as force mains will be selected to withstand the maximum internal
operating pressures, including transient surges.  The project specifications will indicate the
appropriate pressure class and rating for each pipe application. No pipe manufactured is suitable
for all installation requirements and conditions.  The pipe materials covered in this paragraph are
the ones most often used for sewers and force mains carrying sanitary and industrial wastes. 
Each type of pipe will be evaluated to determine its suitability for the particular design.  Pipe
materials found inappropriate for use will be deleted from the project specifications.  Asbestos-
cement pipe shall not be installed.

      (2)  Where iron or concrete pipe are to be considered, special attention will be paid to
subsurface and soil conditions.  The characteristics of the soil in which a pipe is placed affect the
rates of corrosion, with the most corrosive soils being those having poor aeration and high values
of acidity, electrical conductivity, dissolved salts, and moisture content.  The relative potential for
corrosion is best estimated by evaluating the degree of corrosion of existing metallic or concrete
pipelines previously buried in the soil.  Facility engineer personnel will normally have knowledge
of these matters.  When this information is not available, or is nonconclusive, resistivity tests of
the soil will be conducted at several locations within the system and compared to data from pipe
manufacturers.  Typically soil with a resistivity above 30,000 ohm-cm is not likely to cause
corrosion in steel pipe.  More information on controlling corrosion can be found in TM 5-811-7
and the National Association of Corrosion Engineers Standard PR0169, Control of External
Corrosion on Underground or Submerged Metallic Piping Systems.
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      (3)  In areas where problems with root penetration are anticipated (local experience is a
good guide), pipe which has the kind of joint which will successfully resist root penetration shall
be specified.  Generally speaking, the more water tight the joint, the greater will be the resistance
to root penetration.  Rubber-gasketed and compression-type joints are considered to provide the
tightest joints.  Also it is best to use pipe which comes in long lengths.

 b.  Ductile iron.  Ductile iron (D.I.) pipe is suitable for sewers and force mains used at
pumping stations and wastewater treatment facilities.  Special uses include river crossings, pipe
located in unstable soil, highway and rail crossings, and pipinginstalled above ground.  D.I. pipe
is susceptible to corrosionfrom acid wastes and aggressive soils.  Cement, polyurethane,
bituminous, or polyethylene linings are usually providedfor interior protection.  However cement is
not adequate for highly aggressive acid atmospheres; in such environments, pure fused calcium
aluminate with pure fused calcium aluminate aggregates is recommended in lieu of standard
cement lining.  (See Section 11-3, Cement Lining.)  For extremely corrosive soils,polyethylene
encasement in accordance with AWWA C105 is recommended for external protection. Cathodic
protection can be provided but is generally not cost effective when compared to polyethylene
encasement.  Pipe is available in 80 mm (3-inch) through 1,350 mm (54-inch) diameters, in 5-1/2
or 6 meter (18 or 20-foot) lengths, and with mechanical, push-on, or flanged joints.  Flanged
joints are restricted to interior or above ground piping.  Allowable trench and superimposed
surface loads for D.I. pipe are computed and tabulated in ANSI A21.50.  The ordinary range of
loading can be met without special bedding materials and procedures.

c.  Steel. Steel pipe may be used for force mains when lined with cement mortar, bituminous
materials, or polyurethane to provide internal protection.  A bituminous coating must be applied
for externalprotection also.  Lined and coated steel pipe is available indiameters 100 mm (4-inch)
through 3,600 mm (144-inch).  Galvanized steel pipe will only be used for small diameter force
mains and pressure sewers from 32 mm (1-1/4-inch) to 100 mm (4-inch) in size.  Joints for steel
pipe less than 150 mm (6-inch) will be threaded.  Pipe 150 mm (6-inch) in diameter and larger
will have mechanical, push-on or flanged joints.  Threaded and flanged joints will be used only for
interior piping.  Steel pipe will be installed in accordance with the manufacturer's
recommendations, and Manual No. M11 - Steel Pipe Design and Installation published by the
American Water Works Association (AWWA).

d.  Cast iron.  Cast iron soil (C.I.S.) pipe will normally be allowed only as an option for building
connections.  C.I.S. pipe is used primarily for building interior drainage, waste, and vent piping,
as described in Chapter 1 of the Cast Iron Soil Pipe & Fittings Handbook published by the Cast
Iron Soil Pipe Institute. C.I.S. pipe is resistant to internal and external corrosion when provided
with a bituminous coating, and is not subject to abrasion from grit, sand, or gravel.  Factory
applied bituminous coatings need to be inspected after the pipe is installed and recoated as
needed.  C.I.S. pipe is available in 50 mm (2-inch) through 380 mm (15-inch) diameters, in 1.5 m
(5-foot) and 3 m (10 foot) laying lengths, and is manufactured in service (SV) and extra heavy
(XH) classifications.  Pipe joints will be either compression type using rubber gaskets, or bell and
spigot type caulked with lead and oakum.  Structural design of C.I.S. pipe will be in accordance
with the methods outlined in chapter 5 of the Cast Iron Soil Pipe & Fittings Handbook, with
special emphasis given to external loadings and pipe strength.

e.  Concrete.  Concrete pressure pipe and sewer pipe is appropriate for applications requiring
large diameter or high strengths.  A disadvantage is the lack of corrosion resistance to acids,
especially critical where hydrogen sulfide is generated in substantial quantities.  However, special
PVC or clay liner plates, coatings of coal-tar, coal-tar epoxy, vinyl, or epoxy mortar can be applied
to the pipe for corrosion protection.  Concrete pipe joints are either bell and spigot type using
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o-ring gaskets, or tongue and groove type made with cement mortar or bituminousmastic. 
Design of concrete sewers will be in accordance with the Concrete Pipe Handbook by the
American Concrete Pipe Association.  The Concrete Pressure Pipe Manual, Manual No. M9
published by the American Water Works Association (AWWA) will be used for design of force
mains.

 (1)  Type II A cement, as specified in ASTM C 150, is sufficient for most installations. 
Type I may be used in certain situations where less than 0.1 percent soluble sulfates (S0 ) occur4
in the soil, or the wastewater contains less than 150 mg/L sulfates.  If the soil contains more than
0.2 percent water soluble sulfates, or the wastewater sulfate concentration exceeds 1000 mg/L,
Type V cement will be required.  Unlined concrete pipe is subject to scouring by wastewaters
carrying grit and sand at high velocities. 

 (2)  Non-reinforced concrete sewer pipe is generally available in diameters 100 mm
(4-inch) through 750 mm (30-inch), and in minimum laying lengths of 1 m (3 feet).  Pretensioned
reinforced concrete pressure pipe is available in diameters 250 mm (10-inch) through 1,050 mm
(42-inch), prestressed concrete pressure pipe in diameters 400 mm (16-inch) through 3,600
(144-inch), and reinforced concrete (R.C.) pressure pipe in diameters 600 mm (24-inch) through
3,600 mm (144-inch).  Each type utilizes bell and spigot joints with rubber gaskets. Reinforced
concrete pipe will be used where high external loadings are anticipated, and large diameters or
tight joints are required.  The advantages of R.C. sewer pipe include a wide range of diameters,
300 mm (12-inch) through 2,700 mm (108-inch), and laying lengths, 1.2 meters (4 feet) to 7.3
meters (24 feet), which are available.

f.  Plastic.  Characteristics which make plastic pipe highly desirable include high corrosion
resistance, light weight, and low coefficient of friction.  Disadvantages include the possibility of
excessive pipe wall deflections when installed improperly or subjected to high temperature
wastes, and chemical breakdown caused by prolonged exposure to sunlight.  Manufacturer's
recommendations will be used in design of plastic pipe systems (especially in checking
deflection, backfilling and trench loads), in addition to the Handbook of PVC Pipe-Design and
Construction published by the Uni-Bell PVC Pipe Association.  Allowable pipe deflections will be
indicated in the project specifications.  The following types of plastic pipe are suitable for use:

- Polyvinyl chloride (PVC)

- Acrylinitrile butadiene-styrene (ABS)

- Polyethylene (PE)

- High density polyethylene (HDPE)

g.  PVC.  PVC pipe is suitable for gravity sewers or forcemains.  It is chemically inert to most
acidic and alkaline wastes, and is totally resistant to biological attack.  Since it is a nonconductor,
PVC pipe is immune to nearly all types of underground corrosion caused by galvanic or
electrochemical reactions, in addition to aggressive soils.  Durability, light weight, a high
strength-to-weight ratio, long laying lengths, watertight joints and smooth interior surfaces are
characteristics which make PVC pipe an attractive alternative for use in sewer systems. 
Disadvantages include possible chemical instability due to long-term exposure to sunlight,
excessive pipe deflection under trench loadings when installed improperly or subjected to high
temperature wastes, and brittleness when exposed to very cold temperatures.  PVC pipe must
be installed to provide continuous passive lateral soil support along the conduit, and the
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completed installation must be tested for diameter deflection.

 (1)  PVC sewer pipe is available in diameters 100 mm (4-inch) through 1,200 mm
(48-inch), and in laying lengths of 3 to 6 meters (10 to 20 feet).  Pipe dimensions comply with the
standard dimension ratio (SDR) system, which means that mechanical properties are constant
without regard to pipe sizes.  Joints are integral bell and spigot type, and utilize elastomeric
gaskets.

 (2)  PVC pressure pipe is available in diameters 40 mm (1/2-inch) through 300 mm (12-
inch), and with screw, push-on, or solvent weld joints.

   (3)  For added strength against deflection, profile wall pipe is available in sizes from 100
to 1,200 mm (4 to 48 inches).  Profile wall gravity sewer pipe has smooth interior walls and is
braced circumferentially or spirally with outside projections.  When the projections are exposed,
such as ribbed pipe, the pipe is referred to as open profile wall pipe and when covered with a
continuous layer of PVC, the pipe is closed profile pipe.  The bell and spigot joints use an
elastomeric gasket for water tightness.

 (4)  PVC corrugated sewer pipe with a smooth interior is available is sizes from 100 to
900 mm (4 to 36 inches) and also provides additional strength against deflection.

 (5) PVC composite sewer pipe is manufactured in sizes from 8 to 15 inches in diameter
and can be used for gravity sewers or force mains.  It consists of two layers or tubes of PVC
integrally connected with bracing.  The space between the layers is filled with portland cement of
other inert filler to provide continuous support between the tubes.  This construction allows it to
resist deflection better than standard PVC pipe.  Joints can be solvent cement or elastomeric
gasket.

h.  Acrylinitrile butadiene-styrene (ABS).  ABS pipe is light in weight, and resists attack by
acids, alkalies and biological growths.  Manufacturers' design and installation manuals will be
used for selecting pipe embedment, backfill and compaction requirements.

(1)  ABS composite plastic pipe.  ABS composite pipe consists of two concentric
thermoplastic tubes integrally connected across the annulus by a truss--like bracing.  The annular
void space is filled with portland cement concrete, or other suitable material, to form a bond
between the inner and outer tubes.  It is termed a "semi-rigid" pipe because it resists deflection
better than most other plastics.  ABS composite pipe is available in diameters 200 mm (8-inch) to
380 mm (15-inch), and in one laying length of 3.8 meters (12.5 feet).  All joints are the solvent
cement type using joints or fittings which may be factory installed or furnished loose.

 (2)  ABS solid wall plastic pipe.  ABS solid wall plastic pipe, commonly referred to as ABS
sewer pipe, is manufactured from the same compounds as composite pipe, however the pipe
wall is of one solid material.  The pipe is available in diameters 80 mm (3-inch) through 300 mm
(12-inch), and is used for nonpressure sewers.  It does not match the stiffness of composite pipe. 
ABS sewer pipe is joined by either socket type molded fittings, which are solvent fused to the
pipe, or by elastomeric gasket joints.

i.  Polyethylene (PE).  PE pipe is manufactured based on controlled outside diameters or
inside diameters, depending on the types of connections needed.  It can be used for pressure or
gravity applications.  Jointing using heat fusion shall be in accordance with ASTM D 2657 and
with a manufacturer's certified field representative present.  Corrugated PE pipe with a smooth
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interior and fittings are also available for gravity sewers but has limited use due to its low impact
strength.

j.  High Density Polyethylene (HDPE).  PE is divided into 3 classifications - low, medium, and
high density.  HDPE pipe is more widely used for pressure, gravity, and sliplining applications
than the other PE pipes because it is more abrasion and impact resistant.

(1)  Pressure pipe.  Standard HDPE pipe, up to 600 mm (24-inch) in diameter is available
and is generally used for pressure pipe.

(2)  Large diameter profile wall sewer pipe.  Profile wall HDPE pipe is manufactured for
gravity sewers in diameters of 450 to 3,000 mm (18 to 120 inches).  Joints can be heat fused or
bell and spigot (with a gasket or thermal weld).  Mechanical joints shall be used only where other
methods are unfeasible.

k.  Fiberglass.  Fiberglass pipe provides a good alternative for use in large diameter force
mains.  High structural integrity, low pipe friction coefficient, and a high resistance to
internal/external corrosion and to high temperature wastes, are important properties of fiberglass
pipe.  Design, trench and backfilling procedures, and installation of fiberglass pipes will follow the
manufacturer's recommendations.  Specifications shall require that a certified field representative
of the manufacturer be present during installation and to inspect all joints.  The following types of
fiberglass pipe may be used:

      (1) Reinforced thermosetting resin pipe (RTRP).  RTRP pipe may be installed in diameters
of 200 mm (8-inch) through 3,600 mm (144-inch).  Jointing systems for RTRP pipe include bell
and spigot, flanged, or special mechanical type couplings.  Elastomeric gaskets are used to
provide flexible joints.

      (2) Reinforced plastic mortar pipe (RPMP).  RPMP pipe is composed of a siliceous sand
aggregate reinforced with glass fibers, and embedded in a thermosetting polyester resin.  RPMP
pipe is ideally suited for large diameter applications, and performs extremely well in resisting pipe
wall deflection and internal/external corrosion.  The unique fiberglass/resin construction provides
optimum protection against attack from wide range of chemically aggressive environments
including hydrogen sulfide and other sewer gases, most natural soils, salt and brackish water,
and galvanic or electrolytic reactions.  No special coatings or cathodic protection are required. 
Even though RPMP pipe is officially designated a flexible conduit, its structural integrity is such
that for most installations, the trench preparation and backfill requirements are considerably less
than with other flexible conduits, and even some rigid ones.  Its other advantages include
lightweight and a smooth, glass-like interior surface.  RPMP sewer pipe is available in diameters
200 mm (8-inch) through 3,300 mm (144-inch), and in laying lengths of 3, 6, and 12 meters (10,
20 and 40 feet).  Pipe joints are made with grooved couplings or bell and spigot joints utilizing
rubber O-ring gaskets.

 l.  Vitrified clay (V.C.) pipe is manufactured from clay and shale products to form an ideal
material for sewer use.  V.C. pipe has a high resistance to corrosion from acids and alkalies, and
resists scouring and erosion well.  This provides a distinct advantage in serving as industrial
waste sewers, or sanitary sewers subject to hydrogen sulfide generation.  It should be noted that
availability of some sizes and strength classifications is limited in certain geographical areas. 
V.C. pipe is also known for brittleness.  Clay pipe is available in nominal diameters 200 mm
(4-inch) through 1,000 mm (42-inch), and laying lengths of 300 mm to 3 meters (1 to 10 feet). 
Clay pipe is manufactured in Standard and Extra Strength classifications.  The Clay Pipe
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Engineering Manual provides engineering data to be used in designing clay pipe sewers.

m.  Special materials.  In designing sewer systems for military industrial installations, pipe
and appurtenances made of materials which are subject to attack by acids, alkalies or high
temperature, highly corrosive industrial type wastewaters, will not be included in the
specifications.  The designer will carefully evaluate the particular wastes involved, and will
indicate in the specifications the types, concentrations, and temperatures of the various waste
materials to be encountered.  Conditions seldom exist at military installations requiring discharge
of acids, or other type wastes, in such concentrations that vitrified clay pipe would not be
suitable.  However, there may be situations where extremely corrosive wastes preclude the use
of V.C. or other pipe materials covered in this manual.  For these occasions, special pipe
materials, linings, or coatings will be selected using manufacturers recommendations, and any 
other applicable publications.  Laboratory certification of pipe or material performance may be
required in cases of unusual wastes.

n.  Other Considerations.  Solvent cement joints minimize the possibility of poor joint
construction, and greatly reduce groundwater infiltration.

8-2.  VALVES AND APPURTENANCES.  The use of valves in wastewater pumping can be
divided into the following categories:

a.  Isolation or shutoff valves.  Where the need to isolate pumps or part of the piping system
occurs, manually operated shutoff valves will be used.  Gate valves or butterfly valves generally
serve as shutoff valves, however ball valves or plug valves may also be used.  Shutoff valves are
required on the suction and discharge sides of all pumps.

b.  Surge control valves.  To protect pumps and piping from surges caused by pump
shutdown or power failure, gravity operated swing check or ball check valves, or automatically
operated cone, plug, ball or butterfly valves will be installed in the pump discharge line.  The
operation of surge control valves is discussed in paragraph 7-7.

c.  Blowoff valves.  A valve outlet installed at the low point in a force main, and arranged to
drain or flush the pipeline, is termed a blowoff.  Normally, blowoffs will be required only on long
depressed sections of force main, or where an accumulationof solids is likely to occur.  Blowoff
connections will be in-stalled in manholes or valve structures, and will be protectedagainst
freezing.  A means of discharging to a suitable locationmaterials flushed from the system will be
provided.  The pipesize of the outlet connection should coincide with the size of the force main.

d.  Air valves.  Air valves will be installed at high points in force mains for the purpose of
admitting and releasing air.  When the pipeline is taken out of service for draining, flushing and
filling operations, a manually operated valve will be adequate.  However, where air pockets or
pressures less than atmospheric are likely to occur with the pipeline in service and under
pressure, automatic air release and/or air vacuum valves will be used.  Manual valves can also
be used with the pipeline under pressure by leaving the valve partially open.  Automatic valves
are not recommended due to maintenance problems, and should be used only where absolutely
required.  Automatic valves will be of a type specially designed for sewage, and will be provided
with backflushing connections.  All valves will be installed in a manhole or valve structure with
adequate drainage and protection against freezing.
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8-3.  INSTALLATION.  

a.  Thrust restraint.  Force mains will be restrained to resist thrusts that develop at bends,
tees, wye connections and plugs in the pipe.  The magnitude of such forces can be calculated
with the use of formulas found in standard hydraulics textbooks.  Required methods of restraint
will consist of mechanical joint restraints or concrete thrust blocks, and will be designed in
accordance with Appendix C, TM 5-813-5.

b.  Depth of cover.  Force mains will be installed with sufficient depth to prevent freezing, and
to protect the pipe from structural damage.  A minimum cover depth of 1 meter (3 feet) will
ordinarily be required for freeze protection.  However, in unusually cold climates, a greater depth
may be required. 

c.  Protection of water supplies.  Force mains and sewers will not be installed closer than 3
meters (10 feet) horizontally to potable water lines.  If conditions prevent a 3 meters (lO-foot)
clearance, a minimum distance of 2 meters (6 feet) will be allowed provided the bottom of the
water pipe is at least 300 mm (12 inches) above the top of the force main or sewer pipe.  Where
a force main must cross a potable water line, it will always be installed below the water line with
a minimum vertical clearance of 600 mm (2 feet).  Where water lines cross under a gravity
sewer, the sewer pipe for a distance of at least 1 meter (3 feet) on each side of the sewer shall
be fully encased in concrete or shall be made of pressure pipe.  Pressure pipe joints will not be
closer than 1 meter (3 feet) horizontally to the crossing unless fully encased in concrete. 

d.  Asbestos-cement pipe.  Due to the dangers associated with cutting asbestos products, no
asbestos-cement pipe shall be installed.  Safe procedures for cutting existing asbestos-cement
pipe are given in the Asbestos Cement Pipe Producers Association publication Recommended
Work Practices for A/C Pipe.
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CHAPTER 9

PUMP STATION COMPONENTS

9-1.  GENERAL.  Pumps, piping, and equipment must be protected from the weather as dictated
by local climate conditions.  In cold climates pumps and piping must be protected from freezing
and are usually completely housed in structures.  In warm climates portions of stations may be
located in outside enclosures which must provide protection from moisture and other weather
related conditions.  The impact of noise on the surrounding area and the need for security
fencing will be considered for all stations.  Standard windows for unattended remote located
stations may be deleted for security reasons, if other provisions such as skylights or high
windows are made for natural lighting or if artificial lighting is provided to assist periodic
maintenance.  The equipment must be located so as not to be subject to flooding.  The site will
be graded to drain surface water away from structures and wet wells.  Buildings will be designed
in compliance with local codes and regulations.  Building layouts must be designed logically
considering the sequence of installation of initial and future equipment if future expansion is
planned.  The need for storage facilities for equipment parts and tools should be considered and
provided as needed.

9-2.  CONSTRUCTION REQUIREMENTS AND MATERIALS.

a.  Station configuration.  The space requirements of pumps,piping and equipment, along
with the storage volume required inthe wet well, will be carefully determined so that the
propersize, shape and configuration of the pumping station can beselected.  The size and shape
of the station will often bedictated by equipment other than pumps, such as bar screens,
comminutors, grit collectors, etc.  Rectangular or squarestructures normally have more usable
interior space than circularones, and will be employed whenever possible in the design ofmedium
to large sized pumping facilities.  However, where thebelow ground portion of the station must be
made deep toaccommodate incoming sewers, and where foundation conditions arepoor, circular
caisson type structures will be required iflateral earth pressures are excessively high.  Factory
assembledor package type stations will generally be circular in design,and will be anchored to
base slabs where warranted by subsurfaceconditions.  Pump stations located in cold regions or
in seismic zones will require special design considerations.

b.  Designing for operation and maintenance.  The design of medium to large sized,
conventional type pumping facilities will include adequate floor openings, doorways, or access
hatches for the installation, removal, and replacement of the largest items of equipment.  Work
place safety of operation and maintenance personnel and security of the facility will be
considered in the overall design.  Space will be provided for removing equipment for repair
without interruption to other equipment.  Consider the space required to remove bolts from thrust
harnesses of sleeve couplings and to slide couplings off joints.  Interior dimensions in the dry well
or structure will provide a minimum clearance of 1.2 meters (4 feet) between adjacent pump
casings, and a minimum of 1 meter (3 feet) from each outboard pump to the closest wall.  Other
major items of equipment will be provided similar spacing.  A 2.1 meter (7-foot) minimum
clearance between floor and overhead piping will be maintained where practicable.  Smaller
package type stations will be furnished with necessary access openings for removal of pumps
and equipment, however interior dimensions and clearances will generally be less than for field
erected stations.  Small stations with above ground equipment can be enclosed with a removable
cover.  Wet wells for medium to large sized stations will be divided into two or more
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compartments to facilitate cleaning and repairs.  Wet wells for all stations will have no length,
width or diameter smaller than 1.2 meters (4 feet).  Eye bolts or trolley beams will be provided in
smaller stations, and overhead bridge cranes in large stations, for hoisting and removing
equipment from mountings.  Stairs will be provided in medium to large sized stations so that
personnel may inspect and maintain equipment.  Smaller stations, except those utilizing
submersible pumps, will require the use of vertical safety ladders.  A suitable means will be
provided to service and maintain all equipment.  A floor drainage system will be provided in the
dry well, and throughout the superstructure, for collection of wash down, seepage, and stuffing
box leakage.  These wastes will be piped or conveyed to the wet well, either by gravity or by
sump pump.  Openings to the wet well and dry well through the main floor of the station will be
above the maximum flood level, or will otherwise be protected from flooding. 

c.  Materials of construction.  Large to medium sized,conventional type stations will ordinarily
be constructed ofreinforced concrete. The above ground portion of the building maybe of
masonry, wood, or metal panel construction.  Therequirements of Department of Defense (DOD)
Construction CriteriaManual 4270.1-M will be followed in designing for fire resistivestructures. 
Small package type stations will generally bemanufactured of steel or fiberglass with separate
wet wellsconstructed of precast concrete or fiberglass manhole sections. Where steel structures
are used, cathodic protection, in conformance with TM 5-811-7, or appropriate corrosion control
measures will be provided for the underground steel shell.  Alternatively, steel structures may be
protected by a concrete or gunite coating where proof can be furnished by the manufacturer of
satisfactory design life.  All structures will be designed to withstand flotation.

   d.  Personnel safety.  Guards will be placed on and around all equipment where operators may
come in contact with moving parts.  Railings will be required around all floor openings, and along
platforms or walkways, where there is a danger that personnel may fall.  Floors, grating, and
plates will be nonslip.  Warning signs will be placed at all hazardous locations.  Rubber mats will
be provided in front of all electrical equipment where the potential exists for electrical shock. 
Adequate lighting and ventilation will be provided as required in following paragraphs.  In
attended stations where the possibility exists for toxic, explosive, or otherwise hazardous
atmospheres, proper design for personnel safety will be in conformance with TM 5-814-3/AFM
88-11, Vol. 3.  Design for fire protection will be in accordance with DOD Manual 4270.1-M. 
Wastewater pumping stations will be classified as light hazard, industrial type occupancies. 
Always provide a quick, unobstructed exit for people working around pumps.

9-3.  STRUCTURAL SYSTEMS.  The foundation design will be based upon a soils analysis and
recommendations of a geotechnical engineer experienced in the field of soils mechanics and
foundation design.  Information on ground water conditions and the classification of soil types will
be obtained through borings at the pump station location.  For below grade structures the soils
survey will be performed during the time of year when ground water is at its highest.  Conditions
to be considered in the design will be not only soil bearing qualities, but also soil swell potential
and ground water infiltration into the structure through the lowest point of entry which bill be
either pipe penetration of a joint in the concrete.  Usually ground water should be at least one
foot below the lowest point of entry.  The structural design layout will show design of pipe
anchors and pipe supports under pump operating conditions, and foundations under heavy
equipment.  Structural steel will be provided to support piping and conduit.  Reinforced concrete
bases raised above the floor will be provided for pumps, engine drives, large valves and control
devices, and floor mounted electric equipment.  Centrifugal pumps and driver will have common
foundation and base plate.  Refer to TM 5-805-4 for noise and vibration control for equipment
installations.  Floors will slope to floor drains located around all pumps.  Floor loading will
consider moving large equipment in and out for repair, maintenance, and replacement.  Crane
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rails and traveling overhead hoists will be provided in large pump station buildings where use of
temporary or portable hoisting equipment is not practical for maintenance, repair, and equipment
removal operations.  Sufficient headroom must be provided to allow equipment being removed to
clear other equipment.  A removable hatch, hinged hatch, or removal roof panel may be
considered for removal of vertical long stem equipment.  Split floor levels will be avoided.  Where
different floor levels are necessary, standard stair design will be used and safety railing provided
in accordance with OSHA standards.

9-4.  MECHANICAL EQUIPMENT.  Typical pump station layouts are shown in figures 9-1 and 9-
2.  Valves, meters, gauges, and controls shall be located to be accessible without use of ladders
or chain wheels.  Use the structure's walls to support heavy valves and piping.  Locate seal
water valving and appurtenances, such as solenoids and pressure-regulating valves, rotameters,
and isolating valves, on a wall adjacent to the pump and supply the seal water to the pump in
copper or stainless steel piping.  Floor drains and pump gland drains will be provided in above
ground stations.  Sumps and sump pumps will be provided in dry wells.  To avoid plugging of
pipes and valves, pump discharges will not be connected to a manifold or header from
underneath and check valves will not be located in a vertical position.
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Figure 9-1. Pumping station  typical layout
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Figue 9-1. Pumping station typical layout (continued)



EI 11C201 CEMP-E
1 March 1997

9-6

Figure 9-2. Pumping station sections
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Figure 9-2. Pumping station sections (concluded)

9-5.  HEATING AND VENTILATION.

a.  Heating.  All pumping stations subject to possible freezing will be supplied with
automatically controlled heaters in the equipment areas.  For unattended stations, temperatures
will be maintained at 40 degrees F.  Attended stations will be heated to 65 degrees F.  Although
wet wells are generally unheated, thermostatically controlled heaters may be used to prevent
condensation on walls and floors during cool weather, provided the ventilation system is shut off.

b. Ventilation
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      (1) Wet wells will be provided with a positive ventilation capacity of 30 air changes per
hour during occupancy, based onthe wet well volume below grade and above the minimum
wastewater level.   

    (2) Unattended dry wells will be provided with a positive ventilation capacity of 30 air
changes per hour.  Attended drywells will be provided with a continuously-operated ventilation
capacity of 6 air changes per hour, supplemented with additional ventilation in warm climates to
remove pump motor heat to within 3  K (5  F). of the outside air temperature.  Supply intakes ando o

exhaust outlets must be located properly to introduce fresh air and remove hazardous gases or
fumes.  The wet and dry well sides of the station will be provided with separate ventilation
systems.

9-6.  ELECTRICAL EQUIPMENT AND LIGHTING.  Pump station equipmentwill be suitable for
operation at either 208V, 230V, or 480V, 60Hz, three phase power supplies.  However,
equipment with motors smaller than 0.4 kilowatt (0.5 horsepower), including meters, switches,
timers, clocks, and similar equipment, will be suitable for operation at a 125V, 60 Hz, single
phase power source.  

a.  Service transformers.  Service transformer installations will conform to the requirements
of TM 5-811-1/AFM 88-9, chapter 1. 

      b.  Motor starters and controls.  Motor starters and controls will be provided and housed in a
factory assembled, free-standing control center located on the ground floor.  The center will
include motor starters, switches or circuit breakers,instrumentation and controls.  A pump station
requiring a fewsmall sized starters is an exception, and will employ wallmounted or stand
mounted equipment.  

c.  Control for submersible pumps.  Enclosures for submersible pump controls will be
installed above grade.   

d.  Trouble alarms.  Local trouble alarms will be provided atall pump stations.  Alarms will be
annunciated remotely fromunattended stations.  Alarm systems will be provided with manual
silencing.

9-7.  STANDBY POWER.  The requirement for fixed, standby power atwastewater pumping
stations will depend upon the type, location,and critical nature of each pumping facility.  For
stationssituated in low lying areas, or in areas, remote from a treatmentplant, standby capability
will be provided if a power outagewould result in flooding of the station, overflows at sewer
manholes, backup of wastes into buildings, or any unlawfulpollution of the environment, or health
hazard to personnel. Pumping stations located at or in conjunction with treatmentfacilities, such
as those required for influent pumping,recycling or bypassing of flows, and pumping of effluent,
willrequire standby power capability if the pumping is essential tocritical treatment processes,
plant flow control, or is necessaryto maintain compliance with the discharge permit.  If fixed
standby power is required, refer to paragraph 6-3 for designcriteria when selecting pump drive
units, and descriptions ofvarious arrangements to be used in providing fixed, standby
powercapability at wastewater pumping stations.

9-8.  WATER SUPPLY.  A potable water supply is required at alllarge pump stations to supply
washroom and toilet facilities,hydrants, hose bibs, and pump seal systems.  A wash basin
andtoilet facilities will be provided at pump stations which areattended regularly.  Hose bibs will
be provided at wet wells and in dry wells and bar screen rooms. Freeze proof wall hydrants will
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be required for outdoor use.  A positive separation will bemaintained between the potable water
system and any piping orappurtenances subject to contamination.  Warning signs will beposted
at all water taps not directly connected to the potablewater supply.  The positive separation will
be accomplishedeither by providing a break with an air gap, or by installingbackflow prevention
devices.  Air Force facilities will complywith AFM 85-21.

9-9.  FLOW MEASUREMENT.  Flow meters installed to indicate andrecord the discharge from
the pump station, and from individualpumps, will be provided at all medium to large sized
stations.  Ameter installed in the discharge header provides valuableinformation on the operation
of the station, and will be required where pumping capacity is expected to increasesignificantly in
the future.  Pressure gages are required onindividual pump discharge lines, and on the station
dischargeheader.  Elapsed time clocks will be mounted on all pump motorstarters.  For smaller
stations utilizing constant speed pumps,an elapsed time clock may be used in lieu of a pipe
mounted flowmeter to measure pump discharge.  This will also aid inscheduling routine
maintenance on the motor since most smallstations are unattended.  A non-corrodible depth
gage installedin the wet well will generally suffice for very small pumps;flows can be estimated
from depth measurements taken manually. The types of flow measuring devices to be used for
largewastewater pumps of the constant, adjustable or variable speedtype, include flow tubes,
venturi meters, magnetic and ultrasonicflow meters

9-10.  PAINTING AND PROTECTIVE COATS.  The use of paints andprotective coatings at
wastewater pumping stations will be inaccordance with current practices and environmental
conditions.  The protective coatings industry is constantly changing and creating improved and
more environment specific products.  A thorough investigation will be made in the design of
protective coating systems.  Paint materials selected will be appropriate for the types of surfaces
being protected, both submerged and non-submerged.  Coating systems will be designed to
resist corrosion from the wastes being handled, and from gases and vapors present, taking into
consideration the expected temperature and humidity variations within the station.  Coating
systems will consist of adequate surface preparation, and the application of prime and finish
coats using compatible materials as recommended by the coatings manufacturer.  All pumps and
equipment will receive protective coatings in conformance with the manufacturer's
recommendations.  All ferrous materialsincluding galvanized surfaces will be protected. 
Particular carewill be taken to protect welds and threads at connections. Package type stations
will be shipped to the construction sitewith factory applied paints and coatings sufficient for the
required service.
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CHAPTER 10

EVALUATION OF EXISTING SEWER SYSTEMS

10-1.  PROBLEM.  Obviously before a sanitary sewer system is expanded, the adequacy of the
existing sewer and treatment system must be evaluated.  This is generally the responsibility of
the installation where the system is located.  Large amounts of extraneous water now enter
portions of many of these systems through infiltration of groundwater and through inflow from
direct sources.  This excess water has often lead to unnecessary expenses from pumping and
treatment, reduced treatment efficiencies, treatment process upsets due to hydraulic shocks, and
overflowing manholes and wet wells when the system's capacity is exceeded.  This has lead to
health hazards, permit violations, and fines to installations.

a.  Infiltration.  Water leaking from the ground into sewer systems is called infiltration.  Its
major sources are cracks in pipes, joints, manholes, and building laterals.  The more a system
deteriorates, the more infiltration occurs.  Main trunk lines are often located in low lying areas
such as swamps to allow gravity flow from the collection system.  Most of these trunk lines now
are major sources of infiltration.

b.  Inflow.  Direct connections such as roof drains, basement drains, yard drains, and storm
sewer cross connections cause the inflow of relatively clean water into the system.  Since it
occurs during and immediately after a rainfall event, it can be a large quantity of water in a short
period of time.  Systems along waterways can experience inflow problems if the waterway floods
into unsealed manholes.

10-2.  SOURCES OF SEWER SYSTEM DETERIORATION.  Deterioration of systems can be
caused by stresses from surrounding soils and groundwater, surface loads, differential settling,
temperature variations causing expansions and contractions, frost heave, the corrosive nature of
the wastewater, and roots growing through joints.  Such factors can lead to stress fractures in
pipes and joints, crushed pipes, displaced joints, and cracked or collapsed manholes.  Chemical
degradation can result from microbial action releasing sulfide gas into the air where it oxidizes
biologically to sulfuric acid.  The acid is destructive to concrete and in old brick manholes has
destroyed the mortar around the bricks.  The presence of sulfates also leads to microbiological
induced corrosion.

10-3.  INFILTRATION/INFLOW ANALYSIS.  An infiltration/inflow (I/I) analysis is used to
demonstrate the non-existence or possible existence of excessive I/I in the system.  Rainfall and
flows within the study area or subareas must be monitored during dry, low groundwater
conditions, during and after major rainfall events, and during high groundwater conditions.  This
is often accompanied with monitoring groundwater gauges in the immediate vicinity of the
system.The increase in flows during and immediately after rains is considered to be inflow and
the increases after surface water has runoff and during high groundwater conditions are
infiltration.  The analysis includes a comparison to water records and interviews with key
operating personnel.  An estimate of the cost of eliminating the I/I conditions is compared to the
costs of transporting and treating the I/I.  Other factors to be considered include reducing the
probability of sewer cave-ins and adverse effects of overflows.  If the analysis indicates that it
may be worthwhile to eliminate the I/I sources the system is evaluated in more detail in small
areas.  Means for closer evaluations include smoke testing, physical inspections and remote
inspections. 
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10-4.  SMOKE TESTING.  The introduction of smoke under low pressure into a sealed off portion
of the sewer system is used to determine sources of inflow.  This method is effective in
indicating:

- Roof, basement, yard, area, and foundation drains

- Abandoned building sewers

- Faulty connections

- Illegal connections

- Cross-connections with storm sewers

- Structurally damaged manholes.

Shallow deteriorated joints and pipes may also be detected in porous soil.

10-5.  PHYSICAL INSPECTIONS.  A visual inspection of the system above ground is important
in:

- Confirming maps

- Determining the structural condition of manholes, including rings, covers, cone and walls,
steps, bench, and inverts

- Detecting settling of manholes or backfill

- Detecting evidence of ponding or surcharging.

Personnel can also enter manholes and, using mirrors and bright sunlight or portable, high
candlepower lamps, look down sewer lines to detect displaced joints, sediments, blockages,
roots entering joints, collapsed lines, and uneven settling.  The lines should be cleaned prior to
the inspection.

10-6.  REMOTE INSPECTIONS.  A closer inspection can be made using a closed circuit
television camera, an ultrawide angle lens, and a high resolution monitor.  After the line has been
cleaned of debris and roots, the camera is pulled through the sewer between manholes using a
variable speed electric wrench.  Plugs are used to cut off flows.  Photographs can be made of
defects as well as a videotape.
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CHAPTER 11

REHABILITATION OF EXISTING SYSTEMS

11-1.  REHABILITATION VERSUS REPLACEMENT.
 

a. Infiltration.  Techniques for rehabilitating sewer systems to eliminate infiltration are
presented in detail in USA-CERL Technical Report N-88/25.  Their evaluation and applicability to
problems are briefly discussed in the following paragraphs along with other techniques of
trenchless.  All of these techniques work best in small areas and are generally not effective in
correcting problems throughout an old, deteriorated system.  It is generally best to replace
shallow lines where excessive or difficult trenching is not required.  These correction techniques
also work best when there are leaks at joints but the sewer is structurally sound.  Systems with
extensive deterioration most often must be replaced rather than repaired.  It is important to note
that in most systems the major source of infiltration is building laterals which are generally
shallow and can be excavated and replaced. 

b.  Inflow.  Inflow problems are generally much easier to correct than infiltration.  Manhole
covers in roadways or depressed areas are sources of inflow and can be prevented by covering
holes with bolts and sealing around the cover with tar, caulk, insulating foam, or a flexible gasket. 
All cross connections must be eliminated.

11-2.  GROUTING.  Once locations requiring grouting has been identified using remote television
inspection and flows stopped, grout is applied manually in large lines and at manholes and by
remote control in smaller lines or where hazards exist.  The type of grout to use depends on the
type and size of the crack, experience of the installation personnel and external pressure.  This
method should be used only for spot repairs and where further cracking or settling is not
anticipated.  It is best at joints where the grout has deteriorated or was not properly installed and
not where the joints have separated or been damaged by external stresses.

11-3.  CEMENT LINING.  Use of cement lining is restricted to sealing large cracks and adding
protective liners in wetwells, manholes, and sewers over 36 inches in diameter in which workers
can enter the pipe.  It is commonly used in brick manholes where hydrogen sulfide accumulations
have decimated the cement mortar. Portland cement or shotcrete (at least 100 mm (4 inches)
thick) is the most common type of cement liner but is not impervious to hydrogen sulfide attacks. 
There are, however, other types of cement, such as that with a calcium aluminate base, which
are advertised to better resist deterioration caused by hydrogen sulfides. 

11-4.  SLIPLINING.  This technique, which involves pulling or pushing a new pipe through an
existing pipe, will have the greatest application for systems where joint compounds have
deteriorated but the pipes are structurally sound and have not experiencing differential settling. 
Sliplining with flexible plastic pipe, especially polyethylene, after debris and roots have been
removed, has been effective in temperate climates but should not be used if large temperature
fluctuations are anticipated unless methods are used to control temperature-related contraction
and expansion.  Grouting or casing spacers are needed to hold the new pipe firmly in place.  If
the structural damage to the existing pipe is severe, continuous grouting is needed.  If there is
the possibility for significant external pressure to be exerted, such as from a high water table, the
pipe specified must be rigid enough to withstand the pressure.  Even though there are methods
for making connections to laterals, it is best to use sliplining on sections that do not have laterals.
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11-5.  CURED IN PLACE PIPE (CIPP).  In this process a soft, pliable tube, general referred to as
a soft liner, is forced by water or air into the sewer.  The tube negotiates displaced pipes and
cures to a rigid liner.  It is an expensive process but does not require excavation and service can
be continued after only one day.  In a one CIPP process the tube is felt, impregnated with
thermo-setting polyester or epoxy resins.  Other materials are also available but many CIPP
processes are patented and could potentially require sole source justification.  Generally CIPP
should be allowed as one of several options or with performance specifications that do not
prevent competition among manufacturers or other rehabilitation methods.

11-6.  DEFORMED/FOLDED LINERS.  Another method for restoring pipe integrity is that of
installing a deformed or folded liner into an existing pipe and then reforming the liner with heat
and pressure to fit tightly to the inside diameter of the original pipe.  This results in a rigid liner. 
Various manufacturers have different names for their products.

a.  Deformed/Reformed.  In this process, high density polyethylene pipe is deformed in a "u"
shape at the manufacturing plant during the manufacturing process and supplied in long
continuous lengths on coils.  The pipe is pulled into place through existing openings and
reformed by means of steam and low pressures.  This method utilizes sufficient wall thickness to
be considered a "stand alone" product which does not rely entirely on the host pipe for its
structural strength.  This process is controlled by guidelines given in ASTM F 1533 and offers the
advantage of being able to reinstate service laterals internally by means of a remote controlled
cutter.

b.  Folded.  Currently PVC is used as the "folded liner", specifications for which are given in
ASTM F 1504.  This product is folded flat at the manufacturing plant, delivered to the site in coils,
preheated, and then pulled into place in the host pipe.  Once in position, the product is formed by
hot water, steam, or hot air and pressure.  Service laterals can also be remotely installed.

11-7.  PIPE BURSTING.  Each of the previous methods for rehabilating sewers reduce the
interior diameter of the pipe.  A method of replacing existing pipe with equal or larger pipe (up to
50 percent larger in cross sectional area) and without excavating the pipe is known as pipe
bursting, impact mole, or the pipeline insertion method (PIM).  The process, first developed for
replacing gas mains, uses an impact mole to burst the existing pipe outward into the surrounding
soil and replaces it with new pipe (generally high density polyethylene).  An entry pit is prepared
at one end of the existing pipe and a pneumatic pipe bursting mole, which can include an
expander, is set up at the pipe opening.  A winch is positioned at the exit point and a steel cable
guides the mole toward the end.  The percussive action of the pneumatic equipment and the
constant tension of the winch forces the mole through the existing pipe.  When replacing
pressure pipe the new pipe is towed behind the mole, while with gravity sewers, the new pipe
can also be hydraulically jacked behind the mole, which increases the distance between entry
pits.  Generally, entry pits are required between every other manhole.  Connection of laterials
also requires excavation.  The mole can burst even cast iron pipe but can not maneuver through
bends.  Further information can be found in USACERL Technical Manuscript N-91/08, "Review of
PIM (Pipeline Insertion Method) Technology".

11-8.  PIPE CRUSHING.  The pipe crushing process is also a trenchless construction method.  In
it, high density polyethylene pipe is installed in the same operation as the pipe crushing. 
Essentially the process involves the use of a crushing head that implodes and crushes the
existing pipe inward thus causing minimum disturbance to the surrounding soil and allowing
close uses to existing utilities or structures.  Just behind the crushing head, a steel cone clears
away the crushed pipe and excess soil, making room for the new pipe.  Forward progress of the
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crushing head may be aided by the use of a hydraulic pulling unit or other apparatus.  The
replacement pipe is pulled into place directly behind the pipe crushing tools.  With this method
pipe from 150 to 300 mm (6 to 12 inches) can be replaced with the same size pipe or with larger
pipe, up to 300 mm (12 inches).  A modification of the crushing head called a "ripper" may be
used to facilitate installation.

11-9.  OTHER METHODS.  Due to the large demand for cost reduction, new processes for
trenchless rehabilitation are constazntly being developed.  Many of these have patents and could
require sole source justification if other processes are not allowed.  Generally such processes
should be allowed only as one of several options or with performance specifications that do not
prevent other methods from being considered.



CEMP-E EI 11C201
1 March 1997

A-1

APPENDIX A
REFERENCES

GOVERNMENT PUBLICATIONS

Department of Defense

DOD 4270.1-M Construction Criteria Manual

Departments of the Army and the Air Force

TM 5-805-4/AFM 32-1090 Noise and Vibration Control
TM 5-809-10/AFM 88-3, Chap. 13  Seismic Design for Buildings
TM 5-810-5/AFM 32-1070, Chap. 4 Plumbing
TM 5-811-1/AFJMAN 32-1080 Electrical Power Supply and  Chapter 1
Distribution
TM 5-811-7 Electrical Design: Cathodic Protection
TM 5-813-5/AFM 88-10, Vol. 7 Water Supply, Water Distribution
TM -813-9 Water Supply: Pumping Station
TM 5-814-3/AFM 88-11, Vol. 3 Domestic Wastewater Treatment
TM 5-814-8 Evaluation Criteria Guide for Water
Pollution, Control and Abatement
Programs
TM 5-852-5/AFR 88-19, Vol. 5 Arctic and Subarctic Construction Utilities

Department of the Army
U.S. Army Construction Engineering Research Laboratory (USA-CERL)

Technical Manuscript N-91/08 Review of RIM (Pipeline Insertion Method) 
Technology (September 1991)

Technical Report N-88/25 Wastewater Collection System
Rehabilitation Techniques for Army Installations 

(November 1988) 
EM 1110-2-3400 Painting: New Construction and Maintenance

(30 April 1995)

Department of the Air Force

AFM 85-21 Operation and Maintenance of Cross Control
and Backflow Prevention Services
AFM 88-45 Civil Engineering Corrosion Control

-Cathodic Protection

U.S. Environmental Protection Agency,  Technology Transfer Office, Process Design Manual
for Sulfide Control in Sanitary Sewerage Systems, Cincinnati, 1974.



EI 11C201 CEMP-E
1 March 1997

A-2

NONGOVERNMENT PUBLICATIONS

American Concrete Pipe Association(ACPA) 
11800 Sunrise Valley Dr., Suite 309
Reston, VA 22091 Concrete Pipe Handbook (1988)

American National Standards Institute (ANSI)
New York, NY

ANSI A21.50 Thickness Design of Ductile Iron Pipe

American Society for Testing and Materials (ASTM)
Philadelphia, PA

ASTM C 150 (1994) Portland Cement
ASTM D 2657 (1994) Heat-Joining Polyolefin Pipe and Fittings
ASTM F1504 (1994) Folded Polyvinyl chloride (PVC) Pipe for

Existing Sewer and Conduit Rehabilitation
ASTM F1533 (1994) Deformed Polyethylene (PE) Liner
 
Asbestos Cement Pipe Producers Association (ACPPA)
Arlington, VA

ACPPA-01 (1988) Recommended Work Practices for A/C Pipe,

American Water Works Association (AWWA),
6666 West Quincy Ave., Denver, CO 80235

Manual No. M9 (1979) Concrete Pressure Pipe Manual
Manual No. M11 Steel Pipe Design and Installation
AWWA C105 (1993) Polyethylene Encasement for Ductile-Iron

Piping for Water and Other Liquids

Cast Iron Soil Pipe Institute (CISPI)
5959 Shallowford Rd. Suite 419, 
Chattanooga, TN  37421 (1994) Cast Iron Soil Pipe & Fittings Handbook

Uni-Bell PVC Pipe Association (UBPPA)
2655 Villa Creek Dr., Suite 155
Dallas, TX 75234 (1982) Handbook of PVC Pipe-Design and 

Construction 

Water Environment Federation (WEF)
2626 Pennsylvania Ave. NW 
Washington, DC 20037 (1982) Manual of Practice FD-5 Gravity Sanitary 

Sewer Design and Construction
(1994) Pretreatment of Industrial Waste,
Manual of Practice FD-3

Karassik, I. J., W. C. Krutzsch, W. H. Fraser, &  J. P. Messina, eds.,  Pump Handbook, McGraw-
Hill, New York, 1986.



CEMP-E EI 11C201
1 March 1997

A-3

Metcalf & Eddy, Inc., Wastewater Engineering: Collection and Pumping of Wastewater,  McGraw-
Hill, New York 1981.

National Association of Corrosion Engineers, Control of External Corrosion on Underground or
Submerged Metallic Piping Systems, NACE RP0169, Houston.

National Clay Pipe Institute (NCPI), Clay Pipe Engineering Manual, Lake Geneva, WI, 1995.

Sanks, R. L., ed., Pumping Station Design, Buttersworth, Boston, 1989.



CEMP-E EI 11C201
1 March 1997

B-1

                              APPENDIX B 
EXAMPLE PROBLEMS

B-1.  Design 1 mile of interceptor sewer serving a military  installation with the following
populations and industrial discharges.      

  20,000 residents living on the installation (100 gpcd--Table 3-1)  
  6,000 nonresidents or employees coming from off-post and  working 8-hour shifts
     (30 gpcd --Table 3-1) 
  Peak industrial flowrate = 1.0 mgd  
  Allow for an infiltration rate of 1000 gpd/in/mi. 

Domestic Flows                
 20,000 x 100 = 2,000,000 gpd = 2.0 mgd  
  6,000 x 30 = 180,000 gpd = 0.18 mgd
 total average daily flow  = 2.18 mgd        
     
   Use a 24-hour basis since waste load is from the entire  installation, and 92 percent of total is
generated by  residents.  

 Extreme peak flowrate         
   R = 3.8/(2.18)  = 3.34                   0.167

   3.34 x 2.18 = 7.28 mgd      
  Peak diurnal flowrate = 1/2 x 7.28 = 3.64 mgd   

Infiltration Allowance          
  Assume a 30-inch sewer  1000 X 30 x 1 = 30,000 gpd = 0.03 mgd           
  Design Flows                 
    Extreme peak  = 7.28 + 0.03 + 1.0 = 8.31 mgd   
    Peak diurnal  = 3.64 + 0.03 + 1.0 = 4.67 mgd   
    Average daily  = 2.18 + 0.03 + 1.0 = 3.21 mgd    
      
 Typical Sewer Design          
   Try a 30-inch sewer on a 0.10 percent slope (n = 0.013)
   Flow depths and velocities   
   Q = 8.31 mgd     d/D = 0.80 < 0.90 (Para. 3-2)   V = 3.0 fps                         
   Q = 4.67 mgd     d/D = 0.53           V = 2.7 fps > 2.5 fps        
   Q = 3.21 mgd     d/D = 0.43           V = 2.5 fps > 2.0 fps   

Critical depths                                      
   Q = 8.31 mgd     dc/D = 0.48 < 0.80                 
   Q = 4.67 mgd     dc/D = 0.36 < 0.53   Flows are subcritical 
   Q = 3.21 mgd     dc/D = 0.30 < 0.43
                
B-2. Design 2000 feet of main or trunk sewer serving a large  portion of the above installation
with the following  facilities.

  Family Housing
    500 units with 1800 residents (500 x 3.6 at 100 gpcd--Table  3-1)
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  Commercial Buildings
    10 offices with 700 nonresidents, or employees from off-post,  working 8-hour shifts

 (30 gpcd --Table 3-1)

  Elementary School
    500 students for 8 hours per day, 200 of the students live in  the area and
    300 are nonresidents (30 gpcd--Table 3-1)

  Laundromat
    50 machines--open 12 hours per day (500 gpd/machine is a  typical allowance)

Domestic Flows
  Resident 1800 x 100 = 180,000 gpd on a 24-hour basis
  Nonresident (700 + 300) x 30   = 30,000 gpd on an 8-hour basis
  Note that the nonresident population includes office workers and students who do not live in the
area.
  total average daily flow = 210,000 gpd

    Use a 24-hour basis since wastes are from a large area on the  installation and 85 percent is
generated by residents.

Extreme peak flowrate
  R  = 38.2/(210,000)  = 4.930.167

  4.93 x 210,000 = 1,035,300 = 1.04 mgd
  Peak diurnal flowrate = 1/2 x 1.04 = 0.52 mgd

Industrial Flow
   Laundromat
      50 x 500  = 25,000 gpd over 12 hours
      Peak flowrate  = 50,000 gpd = 0.05 mgd

Infiltration Allowance
   Assume a 12-inch sewer
   1000 x 12 x (2000/5280)  = 4545 gpd = 0.005 mgd

Design Flows
   Extreme peak = 1.04 + 0.005 + 0.05 = 1.095 mgd
   Diurnal peak  = 0.52 + 0.005 + 0.05 = 0.575 mgd
   Average daily = 0.21 + 0.005 + 0.05 = 0.265 mgd

Typical Sewer Design
   Try a 12-inch sewer on a 0.35 percent slope (n = 0.013).

Flow depths and velocities
   Q = 1.095 mgd      d/D = 0.68 < 0.80 (para. 3-2) V = 2.9 fps
   Q = 0.575 mgd      d/D = 0.46       V = 2.5 fps = minimum      
   Q = 0.265 mgd      d/D = 0.30        V = 2.5 fps = minimum   

Critical depths                                      
   Q = 1.095 mgd   dc/D = 0.55 < 0.68
   Q = 0.575 mgd   dc/D = 0.40 < 0.46   Flows are subcritical
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   Q = 0.265 mgd   dc/D = 0.26 < 0.30                  

B-3. Design 1000 feet of lateral sewer for a small tributary area  on the above installation with the
following flows.   
   Offices                                              
    2 buildings with 100 employees working 8-hour shifts (30 gpcd  is a typical allowance)   

  Theater        
    300 seats--open 10 hours per day (3 gpd/seat typical allowance)
 Shop           
   30 employees working 8-hour shifts (30 gpcd is a typical allowance)
   No industrial wastes             

Domestic Flows   
  Offices, Theater and Shop           
  100 x 30  = 3000 gpd over 8 hours    
  300 x 3  = 900 gpd over 10 hours     
  30 x 30  = 900 gpd over 8 hours     
  total average daily flow  = 4800 gpd   
                
Use an 8-hour basis since tributary area is small and all occupants are short term.  
  Average hourly flowrate  = 4800/8 = 600 gph           
  Extreme peak flowrate               
  R = 22 5/(600)  = 7.73        0.167

           7.73 x 600 = 4637 gph            
  Peak diurnal flowrate   = 1/2 x 4637 = 2319 gph   
     
Infiltration Allowance                
  Assume an 8-inch sewer (minimum size).                
  1000 x 8 x (1000/5280) = 1515 gpd = 63 gph            
Design Flows     
  Extreme peak = 4637 + 63 = 4700 gph               
  Diurnal peak = 2319 + 63 = 2382 gph                
  Average hourly = 600 + 63 = 663 gph      
         
Typical Sewer Design                                
 Try an 8-inch sewer on a 3.0 percent slope (n = 0.013).         

 Flow depths and velocities
 Q = 4700 gph        d/D = 0.20          V = 3.5 fps
 Q = 2382 gph        d/D = 0.13          V = 2.7 fps   > 2.5 fps
 Q = 663 gph          d/D = 0.05          V = 2.0 fps = minimum

 Critical depths
 Q = 4700 gph        dc/D = 0.29 > 0.20*
 Q = 2382 gph        dc/D = 0.20 > 0.13*
* Note that supercritical flow will result here. The critical slope equals 0.65 percent.

However, a slope of 3.0 percent is required to produce the minimum velocity of 2.0 fps. 
Considering that the sewer is of minimum size, and that a flatter slope is not feasible if adequate
velocity is to be provided, supercritical flow would be justified in this case.
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B-4.  Design a short lateral sewer to serve a battalion headquarters area with 5 companies, each
consisting of 100 men.  Facilities include a 500 man barracks complex, administrative of fices,
motor pool and mess hall. During the normal 8-hour workday a total of 300 people work in the
area, 100 residents (out of 500 total) plus 200 nonresiding officers, NCO's and civilian
employees.  No industrial wastes are generated.  A per capita allowance of 50 gpd from Table
3-1 will be used for the barracks buildings, and 30 gpcd is a typical allowance for office and shop
workers.

Domestic Flows
  300 x 30 = 900 gpd on an 8-hour basis
  500 x 50 = 25,000 gpd on a 16-hour basis
  total average daily flow = 34,000 gpd
Compute average hourly flowrates
  For 8 hours - 9000/8 = 1125 gph
  For 16 hours - 25,000/16 = 1563 gph

Use the 1563 gph as the average hourly flowrate
Extreme peak flowrate
  R = 22.5/(1563  = 6.59)0.167

  6.59 x 1563 = 10,300 gph
Peak diurnal flowrate = 1/2 x 10,300 = 5150 gph

Design Flows
  Extreme peak = 10,300 gph
  Peak diurnal = 5150 gph
  Average hourly  = 1563 gph
Typical Sewer Design
  Try an 8-inch sewer on a 1.4 percent slope (n = 0.013)
  Flow depths and velocities
  Q = 10,300 gph     d/D = 0.35        V = 3.3 fps
  Q = 5150 gph        d/D = 0.25        V = 2.8 fps > 2.5 fps
  Q = 1563 gph        d/D = 0.14        V = 2.0 fps = minimum   

Critical depths                                                  
Q = 10,300 gph      dc/D = 0.43 > 0.35*                         
Q = 5150 gph         dc/D = 0.30 > 0.25*                         
Q = 1563 gph         dc/D = 0.17 > 0.14*

* Again flow would be supercritical, but since a slope of 1.4 percent is required to produce the
maximum velocity of 2.0 fps (S  = 0.7 percent), and the sewer is of minimum size, supercriticalc
flow is justified.


